Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приведение плоской системы сил к данной точке

Все возможные частные случаи приведения плоской системы сил к данной точке представлены в следующей таблице  [c.79]

Приведение плоской системы сил к данной точке  [c.34]

При изучении плоской системы сил мы рассматривали момент силы относительно данной точки как алгебраическую величину, равную произведению модуля силы на ее плечо, взятому со знаком плюс или минус. Из теоремы Вариньона известно, что моменты сил, лежащих в одной плоскости, складываются алгебраически. Точно так же алгебраически складываются и моменты пар, расположенных в одной плоскости. Говоря о приведении плоской системы сил к данному центру ( 21), мы видели, что при переносе точки приложения силы F в какую-нибудь точку О, не лежащую на линии действия этой силы (рис. 115), получается присоединенная пара (F, F ), причем  [c.168]


Допустим, что нам даны две параллельные силы Р и Р" определить их равнодействующую Р. Такая задача соответствует первому случаю — приведению плоской системы сил к одной равнодействующей, т. е. обычному графическому методу сложения двух сил и определению величины, направления и точки приложения их равнодействующей.  [c.50]

Приведением силы к данной точке широко пользуются при преобразовании произвольной плоской системы сил к простейшему виду.  [c.42]

Приведение системы сил к данному центру. Если дана произвольная плоская система сил f j, Р2,-.-, Рп, то, перенося все эти силы параллельно самим себе в произвольно выбранную  [c.39]

Только что выполненное действие приведения силы к данной точке может быть применено к совокупности какого угодно числа сил. Так, если задан плоская система сил Рх =АВ, Р2 — = СО, Рд =ЕР и = 0Я (рис. 51), то, поступив, как было указано в предыдущем параграфе, получим систему сходящихся  [c.55]

Приведение системы сил к данному центру. Пусть дана произвольная плоская система сил Р , Р ,. .., Р . Приводя все эти силы к произвольно выбранной точке О, называемой центром приведения, получаем п сил и п присоединенных пар.  [c.44]

Так как сила Я и пара с моментом Мо, получающаяся в результате приведения данной плоской системы сил к центру О, лежат в одной плоскости, то их можно привести к одной силе Я —Я, приложенной в некоторой точке О. Эта сила является равнодействующей данной плоской системы сил.  [c.41]

В 1.12 подробно изложен процесс приведения сил к точке и доказано, что любая плоская система сил приводится к силе — главному вектору и паре, момент которой называется главным моментом. Причем эквивалентные данной системе сил сила и пара действуют в той же плоскости, что и заданная система. Значит, если главный момент изобразить в виде вектора (см. 1.7), то главный вектор и главный момент плоской системы сил всегда перпендикулярны друг другу.  [c.63]

Пусть дана плоская система сил. Возьмем в плоскости произвольную точку А и определим сумму моментов всех сил относительно этой точки. Если бы сумма моментов не равнялась нулю, то система, конечно, не была бы в равновесии. Если же М ==0, то система может либо находиться в равновесии, либо быть приведенной к равнодействующей, проходящей через точку А (см. таблицу на стр. 79). Следовательно, написанное условие хотя и необходимо, но не достаточно для равновесия системы. Возьмем в той же плоскости другую произвольную точку В и определим сумму моментов всех сил системы относительно точки В. Если  [c.81]


По аналогии с главным вектором момент Mq пары, равный алгебраической сумме моментов всех сил относительно центра приведения О, называют главным моментом системы относительно данного центра приведения О. Следовательно, в общем случае плоская система сил в результате приведения к данной точке О заменяется эквивалентной ей системой, состоящей из одной силы — главного вектора — и одной пары, момент которой называют главным моментом заданной системы сил относительно центра приведения.  [c.35]

Главный вектор данной плоской системы сил будет равен нулю, если построенный для нее силовой многоугольник окажется замкнутым. Этого условия было бы вполне достаточно для равновесия сходящихся сил. Но в случае произвольного расположения сил на плоскости система эквивалентна не одной силе, равной геометрической сумме сил, а совокупности этой силы, приложенной в произвольном центре О приведения, и пары, момент которой равен главному моменту Мд относительно выбранного центра О приведения. Поэтому если главный вектор данной системы равен нулю, а ее главный момент отличен от нуля, то система, очевидно, приводится к паре. Момент этой пары равен главному моменту данных сил относительно центра приведения. В данном случае значение главного момента не зависит от выбора центра приведения.  [c.81]

Пусть к телу приложена плоская система сил Ри Р2, Рп-Выберем какой-нибудь центр приведения О и рассмотрим одну из сил данной системы (рис. 69). Перенося точку приложения этой силы в точку О, получим силу = F и присоединенную пару Р , Р1 ). Если обозначим плечо силы P относительно точки О через то  [c.106]

Следовательно, в общем случае плоская система сил в результате приведения к данной точке О заменяется эквивалентной ей системой, состоящей из одной силы (главного вектора) и одной пары главного момента).  [c.30]

Все сказанное остается снраиедливым для любого числа сил. Итак, плоская система сил в общем случае эквивалентна одной результирующей силе R (см. (3.2)), приложенной в произвольной точке О, и одной результирующей паре с моментом, равным главному моменту то (см. (3.3)). Описанный метод сложения сил па плоскости называется методом Пуансо приведения плоской системы сил к данному центру.  [c.60]

Изменению подвергся в основном первый раздел— Статика . Значительно расширены 2 Аксиомы статики и 3 Связи и реакции связей , заново написан 4 Определение равнодействующей двух сил, приложенных к точке . Переработаны 22 Приведение плоской системы сил к данному центру , а также глава VIII Центр тяжести . Глава Графостатика и параграф Определение усилий в стержнях ферм методом моментных точек из учебника исключены. Из раздела Динамика исключены два параграфа Дифференциальные уравнения точки и Движение материальной точки, брошенной под углом к горизонту , а также доказательство теоремы о движении центра инерции.  [c.3]

Однако нужно сказать, что этот способ мало удобен, во-первых, потому, что при значительном числе слагаемых сил он становится громоздким, и, во-вторых, потому, что точка пересечения линий действия двух слагаемых сил может оказаться настолько удаленной, что не будет помещаться на чертеже. Поэтому мы рассмотрим другой способ приведения плоской системы сил, более простой и более обшдй этот способ применим, как увидим далее, также в самом общем случае, когда последовательное сложение сил становится невозможным, так как линии действия данных сил не будут лежать в одной плоскости и потому могут не пересекаться и в то же время не быть параллельными. Этот второй способ называется приведением системы сил к данному центру (к данной точке) и основан на следующей простой теореме.  [c.100]

Рассуждая аналогично, можно последовательно привести к точке силы пространственной системы. Но теперь главный вектор есть замыкающий вектор пространственного (а не плоского) силового многоугольника главный момент уже нельзя получить а.дгебраиче-ским сложением моментов данных сил относительно точки приведения. При приведении к точке пространственной системы сил присоединенные пары действуют в различных плоскостях и их моменты целесообразно представлять в виде векторов и складывать геоме-трнческн. Поэтому полученные в результате приведения пространственной системы сил главный вектор (геометрическая сумма сил системы) и главный момент (геометрическая сумма моментов сил относительно точки приведения), вообще говоря, не перпендикулярны друг другу.  [c.63]


Как мы видели в предыдущем параграфе, произвольная система сил в общем случае приводится к одной силе Д, равной главному вектору этой системы сил, и к одной паре с моментом Мд, равным главному моменту той же системы сил относительно центра приведения так же как и в случае плоской системы сил, эта сила Д не является равнодействующей для данной системы сил. Выясним теперь, при каких условиях система сил, не лежащих в одпой плоскости, приводится только к одной силе и, следовательно, имеет равнодействующую.  [c.185]


Смотреть страницы где упоминается термин Приведение плоской системы сил к данной точке : [c.336]    [c.90]    [c.49]    [c.92]    [c.168]    [c.71]    [c.90]   
Смотреть главы в:

Основы технической механики  -> Приведение плоской системы сил к данной точке

Основы технической механики Издание 2  -> Приведение плоской системы сил к данной точке

Основы технической механики Издание 2  -> Приведение плоской системы сил к данной точке



ПОИСК



I приведения

Приведение плоской системы сил

Приведение системы сил

Приведение системы сил к данной точке

Приведение системы сил к данному

Система сил, плоская

Система точек

Точка приведения

Точки данных



© 2025 Mash-xxl.info Реклама на сайте