Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прохождение ядерных частиц через вещество

ПРОХОЖДЕНИЕ ЯДЕРНЫХ ЧАСТИЦ ЧЕРЕЗ ВЕЩЕСТВО [ГЛ. VUI.  [c.432]

В 17 и 18 было показано, что при прохождении заряженных частиц через вещество одним из основных механизмов их взаимодействия с электронами и ядрами вещества является электромагнитное взаимодействие. Именно с наличием электромагнитного взаимодействия заряженных частиц с ядрами и электронами атомов среды и связаны особенности ядерных взаимодействий заряженных частиц.  [c.432]

Атомные частицы, проходя через вещество, теряют энергию двумя способами. Во-первых, они могут возбуждать или вырывать атомные электроны во-вторых, они могут передавать энергию атому в целом при ядерных столкновениях. В связи с этим прохождение атомных частиц через вещество представляет сложную задачу многих тел. Однако ввиду большой массы ядра по сравнению с массой электрона можно с приемлемой степенью точности провести различие между ядерными столкновениями , при которых импульс и кинетическая энергия частицы переходят в поступательное движение атома как целого, и электронными столкновениями , при которых энергия передается атомным электронам и происходит возбуждение или ионизация атома. Ядерные столкновения относят к разряду упругих в отличие от неупругих столкновений при обмене энергией налетающей частицы с электронной подсистемой вещества.  [c.198]


Остановимся на трех важнейших процессах, возникающих при прохождении 7-фотонов через вещество, а именно на фотоэффекте на комптоновском рассеянии у-фотонов и на рождении пары легких частиц (электрон—позитрон) в поле атомного ядра. Помимо этих процессов, 7-фотоны высокой энергии могут вызывать и ряд других явлений ядерный фотоэффект, деление ядер, рассеяние и резонансное рассеяние на ядрах, образование пар в поле электронов и в поле излучения и др.  [c.31]

Итак, прохождение у-фотонов через вещество сопровождается появлением вторичных заряженных частиц — электронов, выбиваемых при фотоэффекте и комптоновском рассеянии тяжелых заряженных частиц — протонов, вырываемых при ядерном фотоэффекте, и электронно-позитронных пар.  [c.37]

Очевидно, что процессы, возникающие при прохождении частиц через вещество, имеют исключительно важное практическое значение как для самой ядерной физики, так и для соприкасающихся с ней областей науки и техники. Без хорощего знания этих процессов нельзя понять методов регистрации ядерных частиц или, например, рассчитать толщину бетонной стены для радиационной защиты от ядерных излучений ускорителя частиц.  [c.430]

Для других (отличных от 7-квантов) нейтральных частиц электромагнитное взаимодействие либо полностью отсутствует (для нейтрино), либо очень мало. Огромный практический интерес представляет взаимодействие с веществом интенсивных потоков нейтронов. Эти процессы в основном не атомные, а ядерные. Они будут рассмотрены в гл. X и XI. Нейтрино подвержены только слабым взаимодействиям, так что эти частицы могут свободно проходить в веществе астрономические расстояния. Поэтому вопрос о прохождении потоков нейтрино через вещество интересен главным образом для астрофизики и будет рассмотрен в гл. ХП, 1.  [c.432]

РАЗРЯД (искровой имеет вид прерывистых зигзагообразных разветвляющихся нитей, быстро прекращающихся после пробоя разрядного промежутка уменьшения напряжения, вызванного самим разрядом кистевой относится к разновидности коронного разряда, сопровождающегося появлением искр вблизи острия коронный — высоковольтный самостоятельный разряд, возникающий в резко неоднородном электрическом поле вблизи электродов с большой кривизной поверхности (острие, проволока) лавинный электрический разряд в газе, в котором возникающие при ионизации электроны сами производят дальнейшую ионизацию несамостоятельный— газовый разряд, существующий при ионизации газа внешним ионизатором самостоятельный не требует для своего поддержания внешнего ионизатора тлеющий происходит самостоятельно в газе при низкой температуре катода, сравнительно малой плотности тока и пониженном по сравнению с атмосферным давлении газа электрический — прохождение электрического тока через вещество, сопровождающееся изменением состояния вещества под действием электрического поля) РАЗУПРОЧНЕНИЕ — понижение прочности и повышение пластичности предварительно упрочненных материалов, РАКЕТОДИНАМИКА — наука о движении летательных аппаратов, снабженных реактивными двигателями РАСПАД радиоактивный (альфа состоит в испускании тяжелыми ядрами некоторых химических элементов альфа-частиц бета обозначает три типа ядерных превращений электронный и позитронный распады, а также электронный захват гамма является жестким электромагнитным излучением, энергия которого испускается при переходах ядер из возбужденных энергетических состояний в основное или менее возбужденное состояние, а также при ядерных реакциях) РАСПЫЛЕНИЕ катодное — разрушение твердых тел при  [c.269]


Общая картина прохождения частиц высокой энергии через вещество крайне сложна. Частицы сталкиваются с электронами, находящимися на различных оболочках, рассеиваются кулонов-скими полями ядер, а при достаточно больших энергиях вызывают и различные ядерные реакции. Кроме того, при достаточно высоких энергиях частиц неизбежно возникают разнообразные вторичные эф( №кты. Например, как мы увидим ниже, пучок высокоэнергичных электронов порождает в веществе мощный поток вторичных у-квантов, который необходимо учитывать при расчете, скажем, радиационной защиты. Это, однако, вовсе не значит, что процессы прохождения через вещество совершенно не поддаются расчету. Целый ряд важнейших величин, характеризующих эти процессы, удается довольно точно рассчитать или хотя бы оценить. Этому способствуют следующие причины.  [c.431]

Из-за преобладающей роли электромагнитных процессов прохождение заряженных частиц и у-квантов через вещество является разделом скорее атомной, чем ядерной физики. Но падающие частицы обладают энергиями, характерными для ядерной физики. Поэтому с процессами прохождения исследователи сталкиваются при изучении или использовании ядерных излучений.  [c.432]

При прохождении через вещество улучей их интенсивность ослабевает за счет фотоэффекта, комптоновского рассеяния, образования пар позитрон — электрон и ядерного фотоэффекта, при котором происходит испускание ядром протонов, нейтронов, а-частиц, а такл<е ядер.  [c.232]

Взаимодействие заряженных частиц со средой. 1. Основной причиной потерь энергии заряженной частицей при прохождении через вещество являются столкновения ее с атомами этого вещества. Ввиду того что масса ядра всегда велика по сравнению с массой электронов атома, можно достаточно четко провести различие между электронными столкновениями , при которых энергия падающей частицы передается одному из электронов атома, в результате чего происходит возбуждение или ионизация атома (неупругое столкновение), и ядерными столкновениями , при которых импульс и кинетическая энергия частицы частично переходят в поступательное движение атома как целого (упругое столкновение). Повторяясь, эти ядерные столкновения приводят к мно-кратному рассеянию частиц в веществе.  [c.130]

Ядерная модель явилась результатом опытов Резерфорда, изучавшего прохождение а-частиц (VI.4.4.Г) через тонкие металлические пластинки золота и платины. Альфа-частицы, испускаемые ядро , урана (VI.4.7.2 ), имеют энергию 4,05 МэВ. С помощью таких частиц Резерфорд и его сотрудники простреливали тонкие пластинки металлов и изучали рассеяние а-частнц в веществе. Упрощенная схема опытов изображена на рис. VI.2.1. а-частицы испускались источником 1, помещенным внутри свинцо-  [c.437]

Глава VIII ПРОХОЖДЕНИЕ ЯДЕРНЫХ ЧАСТИЦ ЧЕРЕЗ ВЕЩЕСТВО  [c.430]

Вопрос о прохождении атомных частиц через вещество был рассмотрен Н. Бором [29], сформулировавшим исходные понятия теории столкновений заряженных частиц с атомами твердого тела, и получил дальнейшее развитие в работах Линдхарда с сотрудниками, которые исследовали его применительно к прохождению осколков деления в уране [30]. Было показано, что энергия осколков деления, переданная в ядерных столкновениях, приводящих к образованию первично выбитых атомов, которые в свою очередь  [c.198]

Детектором, или, что то же, регистратором ядерных частиц, мы будем называть устройство, дающее информацию о прохождении отдельных частиц через определенные макроскопические об-ллсти пространства. Основная трудность регистрации состоит в том, что эффект воздействия отдельной частицы на вещество с макроскопической точки зрения крайне мал. Наиболее заметным эффектом такого рода является ионизация вещества заряженной частицей. Поэтому работа подавляющего большинства существующих типов детекторов заряженных частиц основана на принципе использования ионизационной способности частиц. В немногих типах детекторов используется электромагнитное излучение заряженных частиц в среде. Действие нейтральных частиц на вещество слишком ничтожно для того, чтобы их можно было регистрировать непосредственно. Поэтому нейтральные частицы регистрируются по вторичным процессам исследуемые нейтральные частицы порождают заряженные, которые регистрируются по их ионизирующему действию.  [c.468]

Большую группу ( . з. ч. составляют приборы, в к-рых используется газовый разряд, инициированный проходящей частицей между электродами различной конфигурации. В соответствии с характером разряда пользуются ионизационной камерой в импульсном режиме, основанной на собирании электронов первичной ионизации пропорциональным счетчиком, использующим эффект газового усиления при развитии электронных лавин счетчиками с самостоятельным газовым разрядом (см. Газовые счетчики). Наибольшее распространение получил Гейгера—Мюллера счетчик, где благодаря сильной неоднородности электрич. поля (цилиндр — нить, плоскость — острие) при прохождении ионизующей частицы развивается коронный разряд. В искровом счетчике проходящая частица инициирует искру между плоскопараллельными электродами. В импульсном режиме работают также кристаллические счетчики и полупроводниковые счетчики (см. Полупроводниковый детектор ядерных излучений), в к-рых импульс тока обусловлен электронно-дырочной проводимостью, возникающей в монокристалле или полупроводнике (точнее, в области р — п-перехода) нод действием ионизующей частицы. В сцинтилляционных счетчиках электрич. имиульс обра ется на аноде фотоэлектронного умножителя, преобразующего вспышку света, возникающую в сцинтиллирующем веществе (кристалле, жидкости, пластике или газе) нри высвечивании возбужденных ионизующей частицей атомов или молекул. В Черенкова счетчике вспышка света возникает при прохождении частицы через вещество со скоростью, превышающей фазовую скорость света  [c.110]


Исследуя рассеяние а-частиц при прохождении через вещество, Э. Резерфорд в 1911 г. пришел к открытию существования атомного ядра. Он выдвигает ядерную (планетарную) модель атома, согласно которой атом состоит из положительно заряженного ядра и обра-  [c.10]

Во-первых, при прохождении заряженных частиц и у-квантов через вещество основную роль играют хорошо изученные электромагнитные взаимодействия. Роль ядерных взаимодействий в большинстве случаев мала из-за короткодействия ядерных сил, а также из-за того, что электронов в веществе гораздо больше, чем ядер. Поэтому мы в этой главе будем в основном изучать электромагнитные взаимодействия частиц с веществом. Только в 5 и 6 мы немного коснемся роли ядерных взаимодействий.  [c.431]

Особенно важна Р. з. в случае проникающего нейтронного излучения. Прохождение нейтронов через защитный слой анализируют в осн. методом моментов, лю-тодом Монте-Карло и численного интегрирования ур-ния Больцмана. Ослабление потока быстрых нейтронов в защитном слое происходит из-за упругого (особенно в водородсодержащих веществах Н2О, парафин, Полиэтилен, гидриды металлов, бетон) и неупругого рассеяния нейтронов. На достаточно больших расстояниях от плоского источника ослабление пучка с расстоянием происходит экспоненциально. Р. э. ядер-ного реактора отличается те.ч, что поглощение в защитном слое одного вида частиц, напр. тепловых нейтронов, как правило, сопровождается возникновением у-излучения (ядерная реакция (п, у)]. Так, при поглощении теплового нейтрона ядром водорода образуется фотон с энергией 2,2 МэВ, а в случае более эфф. поглотителя (напр., d) на один захваченный нейтрон приходится более 10 фотонов. Оптимальная Р. з. реактора содержит водородсодержащяе вещества или графит, замедляющие быстрые нейтроны до тепловых энергий (см. Замедление нейтронов), и ядра, захватывающие тепловые нейтроны (В, Сс1, Gtl). На АЭС обычно используют бетон с добавками металлич. скрапа и дроби, эффективно ослабляющий как нейтронное, так и у-излу-чение.  [c.201]


Смотреть страницы где упоминается термин Прохождение ядерных частиц через вещество : [c.235]    [c.454]    [c.658]    [c.65]    [c.367]    [c.31]   
Смотреть главы в:

Ядерная физика  -> Прохождение ядерных частиц через вещество



ПОИСК



Ядерное вещество



© 2025 Mash-xxl.info Реклама на сайте