Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Неустойчивость растяжения при большой деформации

Неустойчивость растяжения при большой деформации  [c.144]

Согласно (8.61), площадь поперечного сечения стремится к нулю. Фактически при очень больших деформациях равномерное растяжение становится неустойчивым и в каком-то из сечений образуется шейка. Однако отрезок времени до образования шейки мало отличается от отрезка времени /кр-  [c.584]

При выполнении условия (3.4) со знаком равенства нагрузка Р достигает максимального значения и происходит спонтанное удлинение стержня. В этом смысле его равновесие неустойчиво, и если речь идет о некотором элементе конструкции, то его несущая способность исчерпана. Но для технологических процессов характерно, что обычно заданы не нагрузки на заготовку, а кинематика пластического деформирования. Технологические машины за редким исключением способны работать как при возрастающей, так и при понижающейся нагрузке. В связи с этим при исследовании технологических процессов интересуются не пластической неустойчивостью, выражающейся в том, что малое изменение нагрузки вызывает большое изменение деформации, а неустойчивостью, приводящей к недопустимому изменению геометрической формы заготовки (например, если прямой при устойчивом деформировании стержень после потери устойчивости становится кривым если у растягиваемого листа появляется локальное утонение и т. д.). В дальнейшем рассматривается локализация пластической деформации. В связи с этим важно выяснить, насколько надежно предсказывает рассматриваемые критерии неустойчивость именно этого типа. Проведенный анализ растяжения стержня имеет для нас смысл, лишь поскольку согласно наблюдениям в этом случае оба типа неустойчивости оказываются совмещенными. Объясняется это следующим.  [c.106]


Однако эта таблица не может быть продолжена до больших значений интенсивности деформации, так как уже при относительно небольших значениях e напряженное состояние простого растяжения становится неустойчивым.  [c.214]

Пуанкаре показал, что при дальнейшем росте углового момента определённые фигуры равновесия на последовательности Маклорена становятся вековым образом неустойчивыми относительно гармоник более высокого (чем п = 2, Б. К.) порядка. Эти результаты для сфероидов определяются известными свойствами зональной и тессеральной гармоник, к которым сводятся эллипсоидальные функции Ламэ в более простых координатах, когда эллипсоид имеет две равные оси. Конечно, исследование самих эллипсоидов Якоби опирается на общие функции Ламэ. Аналогичным образом Пуанкаре смог показать, что и эллипсоиды Якоби теряют вековую устойчивость сначала от гармонической деформации третьего порядка, а затем, при большем растяжении и моменте вращения, появляются конфигурации, проявляющие неустойчивость относительно гармонических функций Ламэ четвёртого, пятого и т.д. порядков ).  [c.16]

Вспомним основные стадии деформации стального образца при его растяжении в испытательной машине вначале это упругая деформация, затем равномерно распределенное по длине образца пластическое течение, затем - образование шейки и, наконец, разрыв в результате быстрого распространения поперечной трещины. Переход от одной стадии к другой сопровождается все большей локализацией деформаций. Так, упругая деформация равномерно распределена по объему (измеренные относительные удлинения и сдвиги не меняются при уменьшении базы измерения - элементов тела - вплоть до размеров, близких к межатомным расстояниям), пластическое течение равномерно охватывает образец в целом, однако при более пристальном рассмотрении оказывается, что оно в основном сосредоточено на удаленных друг от друга плоскостях скольжения. Образование шейки происходит в локальной области - на малом участке по длине образца, а трещина представляет собой предельную локализацию бесконечная деформация - разрыв сплошности - сосредоточена на одной вновь образованной поверхности, разделяющей образец на две части. Смена стадий происходит в результате того, что дальнейшее развитие данной стадии становится неустойчивым и оно подавляется последующей.  [c.13]


Следует подчеркнуть, что теорема единствепности нами доказана для геометрически линейной теории упругости. Для нелинейной теории и больших деформаций приведенный выше способ доказательства недействителен, так как тогда положительная определейность энергии деформации может нарушаться. Последнее означает одно из двух либо принятая модель сплошпой среды некорректна, либо материал неустойчив. Примером неустойчивого материала служит материал с падаюш,ей диаграммой растяжения, когда одному и тому же значению на-  [c.62]

Статическое деформационное старение стали протекает в несколько стадий. Начальная стадия деформационного старения стали заканчивается образованием атмосфер Коттрелла. После образования насыщенных атмосфер в результате дальнейшего увеличения плотности примесных атомов на дислокациях происходит образование сегрегаций (неустойчивых выделений или предвы-делений). Завершается деформационное старение образованием мелкодисперсных выделений на дислокациях [45, с. 142]. Поэтому наряду с повышением прочностных свойств происходит значительное повышение температуры хладноломкости, снижение пластичности и вязкости стали, часто доходящее до почти полной потери способности стали к пластической деформации. Субструктурные изменения при статическом деформационном старении в большей степени влияют на ударную вязкость, чем на свойства при растяжении. Динамическое деформационное старение ввиду кратковременности процесса и благодаря высокой плотности дислокаций заканчивается в большинстве случаев образованием атмосфер или сегрегаций на дислокациях. Поэтому снижение пластичности стали в результате динамического деформационного старения обычно происходит не до полной потери способности стали к пластической деформации. Субструктурные изменения при динамическом деформационном старении оказывают примерно одинаковое  [c.298]

Помимо перечисленных, так называемых внешних факторов, существует большое число факторов, отражающих реакцию материала на возникшие состояния и протекающие процессы, т. е. то, что принято называть свойствами материалов в широком смысле этого понятия. Свойства материалов и элементов конструкции, в которых они физически воплощены, крайне многообразны а) упругость, характеризуемая модулем упругости Е, и пластическая деформируемость, описываемая диаграммой о = / (е) б) прочность, выражаемая при однократном нагружении пределом текучести, временным сопротивлением, истинным разрушающим напряжением в) пластичность в виде относительного удлинения и поперечного сужения г) упрочняемость материала и пластическая неустойчивость при растяжении д) упругая неустойчивость при сжатии е) сопротивляемость накоплению усталостных повреждений, в том числе у острия трещины ж) прочность при повторных пластических нагружениях з) сопротивление ползучести и) длительная прочность и пластичность при высоких температурах к) старение металла под воздействием деформации, температуры, времеии л) сопротивление началу разрушения в присутствии концентраторов — надрезов, трещин м) сопротивление быстрому динамическому распространению трещин н) стойкость против общей межкристаллитной коррозии, а также против коррозионного растрескивания о) сопротивление замедленным разрушениям п) хладостойкость и др.  [c.256]


Смотреть страницы где упоминается термин Неустойчивость растяжения при большой деформации : [c.24]    [c.120]   
Смотреть главы в:

Механика деформируемого твердого тела  -> Неустойчивость растяжения при большой деформации



ПОИСК



Большая деформация

Деформация растяжения

Неустойчивость

Ра неустойчивое



© 2025 Mash-xxl.info Реклама на сайте