Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Однородная деформация. Потенциал перемещения

ОДНОРОДНАЯ ДЕФОРМАЦИЯ. ПОТЕНЦИАЛ ПЕРЕМЕЩЕНИЯ  [c.16]

В самом деле, из вариационного принципа Лагранжа следует, что из всех кинематически допустимых систем действительная отличается тем, что для нее лагранжиан в положении равновесия имеет минимум, а из (1.26) следует, что минимум имеет и потенциал 1 0, соответствующий задаче А с граничными условиями (1.7). Но таким же граничным условиям удовлетворяет и однородная деформация (3.1), а потому вектор перемещений, ей соответствующий, является кинематически допустимой системой, откуда и следует (3.5).  [c.75]


Во второй главе рассматриваются основные уравнения задачи термоупругости в квазистатической постановке, когда не учитываются связывающий член в уравнении теплопроводности и инерционные члены в уравнениях равновесия. Рассмотрение этого вопроса в специальной главе оправдывается тем, что квазистатическая задача термоупругости имеет наибольшее практическое значение в обычных условиях теплообмена тепловые потоки, образующиеся вследствие деформации, и динамические эффекты, обусловленные нестационарным нагревом, настолько невелики, что соответствующие члены в уравнениях могут быть отброшены и система уравнений распадается на обычное уравнение нестационарной теплопроводности и уравнения, описывающие статическую задачу о термоупругих напряжениях при заданном температурном поле, вызванном внешними источниками тепла. Здесь при изложении постановки квазистатической задачи термоупругости в перемещениях представление общего решения выбрано в форме, полученной П. Ф. Папкови-чем в 1932—1937 гг. В этой форме решение однородного уравнения для вектора перемещения содержит произвольные гармонические вектор и скаляр, а частное решение соответствующего неоднородного уравнения, отвечающего заданному температурному полю, определяется через скалярную функцию, получившую название термоупругого потенциала перемещений, которая удовлетворяет уравнению Пуассона.  [c.7]

Так, например, используя формулу (11.9.4) для потенциала однородного эллипсоида, можно без труда решить задачу о тем-лературных напряжениях в теле, содержащем в себе мгновенно нагреваемую область, имеющую форму эллипсоида. Теперь перемещения будут определяться по формулам (11.9.5) с точностью до множителя, который читатель легко восстановит. Комбинируя формулы (11.9.5), мы найдем компоненты деформации, а следовательно,— напряжения. Производные от потенциала тяготения представляют собою силы тяготения, которые убывают по мере удаления от начала координат как 1/г , следовательно, напряжения убывают как 1/г , т. е. так же как перемещения и напряжения от центра расширения. Поэтому формулы ы,- = i]),,- дают полное решение для неограниченной среды. В 8.14 было разъяснено, что центр расширения моделирует напряжения, возникающие при выпадении новой фазы. Очевидно, что изменение объема может быть вызвано не только изменениями температуры, но и фазовыми превращениями, поэтому формулы (11.9.5) могут быть применены к тому случаю, когда частица выпавшей фазы имеет форму эллипсоида эти выражения пригодны как для точек, принадлежащих внутренности включения (при и = 0), так и для точек матрицы (и =/= 0). Заметим, что внутри включения перемещения представляют собою линейные функции координат  [c.384]



Смотреть страницы где упоминается термин Однородная деформация. Потенциал перемещения : [c.290]   
Смотреть главы в:

Теория упругости  -> Однородная деформация. Потенциал перемещения

Теория упругости  -> Однородная деформация. Потенциал перемещения



ПОИСК



Деформация однородная

Деформация перемещений

Однородность тел

Потенциал деформаций

Потенциалы перемещений



© 2025 Mash-xxl.info Реклама на сайте