Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вывод закона тяготения Ньютона из законов Кеплера

Вывод закона тяготения Ньютона из законов Кеплера.  [c.428]

Вывод первого закона Кеплера из закона всемирного тяготения Ньютона  [c.397]

Формулы Вине дают возможность рассчитывать скорость и действующую силу в зависимости от положения точки на заданной в плоскости V траектории. Их можно использовать, в частности, для вывода закона всемирного тяготения Ньютона из законов, сформулированных И. Кеплером по наблюдениям за движением небесных тел солнечной системы. Приведем законы Кеплера.  [c.255]


Бертран показал, что этим условиям удовлетворяют центральные сплы притяжения к неподвижной точке Fr = —iir и F, = —Первый случай был только что разобран, а второй будет рассмотрен на следующем примере, содержащем вывод закона Ньютона о всемирном тяготении из уравнений Кеплера.  [c.26]

Установление закона силы может происходить путем непосредственного обобщения результатов опыта, заключающегося в определении закона силы по наблюдаемому движению. Примером может служить только что приведенный вывод закона всемирного тяготения Ньютона из экспериментально установленных Кеплером кинематических законов движения планет ( 48).  [c.27]

Всемирное тяготение. Масса инертная и масса гравитационная. — Закон всемирного тяготения был установлен Ньютоном и представляет собой одно из самых важных открытий во всей истории науки. Этот закон выводится из законов Кеплера, относящихся к движениям планет, и формулируется следующим образом  [c.126]

На современников сильнейшее впечатление произвела данная Ньютоном иллюстрация вывод из законов Кеплера закона тяготения и доказательство того, что при наличии такого тяготения к центру (Солнцу) тяготею-пще тела (планеты) движутся по коническим сечениям, в фокусе которых находится центральное тело. Но так как здесь рассматривается только становление классической механики как определенной законченной системы.  [c.117]

Законы Кеплера давали вполне ясную картину движения планет и показывали, что мир планет представляет собой стройную систему, управляемую единой силой, связанной с Солнцем. Но установить закон действия силы тяготения к Солнцу Кеплер не мог, так как еще не были известны основные законы механики. Впервые силу, действующую на планеты, определил Ньютон. Первые исследования Ньютона по этому вопросу относятся, по-видимому, к 1666 г., но окончательные результаты были опубликованы в 1687 г. в сочинении Математические начала натуральной философии . Все своп рассуждения Ньютон проводил сложным геометрическим методом. При выводе закона тяготения будем пользоваться формулами Бине.  [c.243]

Отсюда можно сделать следующий вывод если в формулировке первого закона Кеплера добавить, что он справедлив при любых начальных условиях, то отсюда вытекает, что сила центральна, а поэтому справедлив закон площадей следовательно, при этом добавлении из первого закона Кеплера вытекает второй и закон тяготения Ньютона.  [c.281]


Таким образом, исходя из законов Кеплера, приходим к выводу, что ускорение любой планеты обратно пропорционально квадрату расстояния от планеты до Солнца и направлено к центру Солнца (сравните этот результат с законом всемирного тяготения Ньютона (1.49)).  [c.24]

Сила связана с взаимодействием тел и проявляется в возникновении ускорения. Всякое отступление от равномерного прямолинейного движения означает, что на тело действует какая-то сила. Анализ этих отступлений от закона инерции составляет основу метода изучения сил. Исторически первым примером изучения сил на основе наблюдений и эксперимента было установление Ньютоном закона всемирного тяготения. В своих выводах Ньютон использовал законы движения планет, сформулированные И. Кеплером после упорного 16-летнего труда по анализу очень тщательных наблюдений голландского астронома Тихо Браге.  [c.89]

В ньютоновом законе тяготения мы выделим три наиболее характерных момента. Во-первых, в этом законе сила тяготения есть универсальный принцип. При его выводе из свойств материи принимается во внимание только одно — наличие массы. Масса, по Ньютону,— все-обш ая характеристика любой материи. Поэтому закон тяготения, распространяюш ийся на все тела, безотносительно ко всем другим их свойствам,— это высшее, математизированное выражение идеи едхшства Вселенной, подготовлявшееся трудами Коперника, Кеплера, Бруно, Галилея. В законе тяготения исчезает противоположность небесного и земного, подлунного и надлунного . Во-вторых, тяготение основано на взаимодействии тел, а не на одностороннем притяжении одного тела другим. И, в-третьих, понятие силы тяготения у Ньютона уточнено количественно.  [c.154]

Рассказывают, будто упавшее с дерева яблоко навело Ньютона на размышления, которые привели к открытию закона всемирного тяготения. Возможно, что это и так. Но бесспорно, что при таком (или подобном) наблюдении Ньютону пришла удивительная мысль не является ли сила, удерживающая Луну на орбите, силой той же природы, что и сила, заставляющая тело падать на поверхность Земли, но лишь ослабленной за счет расстояния Сопоставляя центростремительное ускорение Луны и ускорение свободного падения тел на поверхности Земли, Ньютон немедленно пришел к выводу, что если причина падения тел на Землю и движения Луны одна и та же и состоит во взаимном притяжении тел, то сила, с которой тело притягивается к Земле, должна быть обратно пропорциональна квадрату расстояния до центра Земли. Распространив гипотезу о притяжении между телами на все тела солнечной системы, Ньютон смог объяснить, почему движение планет подчиняется трем законам Кеплера, почему этим же законам подчиняется движение спутников около планет (спутники Марса, Юпитера, Земли). На основе закона всемирного тяготения Ньютон также объяснил движение комет, образование морских приливов на Земле, возмущения в движении Луны. Далее Ньютон сделал обобщающее предположение, что взаимное притяжение тел — универсальное свойство и проявляется во всем окружающем нас мире. То, что взаимное тяготение тел не наблюдалось в обычных условиях нашей жизни (между окружающими нас телами), объясняется только тем, что сила взаимного притяжения для тел с небольшой массой очень мала и в обычных условиях перекрывается другими силами (например, трением). Однако, если создать специальные условия, устраняющие трение, можно обнаружить и силы взаимного притяжения обычных тел. Это впервые проделал Кавендиш  [c.58]

Среди деятелей эпохи Возрождения особенно выделяется гениальный художник, геометр и инженер, итальянец Леонардо да Винчи (1452—1519), которому принадлежат исследования в области теории механизмов, трения в машинах и движения по наклонной плоскости. Кроме того, он занимался перспективой, теорией теней и строил модели летательных машин. Им построен также эллиптический токарный станок, носящий до сих пор его имя. Другой замечательный деятель этой эпохи, великий польский ученый Николай Коперник (1473—1543) создал свою гелиоцентрическую картину мира, которая, сменив геоцентрическую картину Птолемея, произвела большой переворот в научном мировоззрении и оказала огромное влияние на все последующее развитие естествознания. Благодаря работам Коперника и многочисленным наблюдениям датского астронома Тихо-Браге Иоганн Кеплер (1571 —1630) получил свои три знаменитых закона движения планет, послуживших Ньютону основанием для его закона всемирного тяготения ). Далее следует упомянуть о работах голландца Стевина (1548—1620), который исследовал законы равновесия тел на наклонной плоскости и в результате пришел к выводу основных законов статики.  [c.11]



Смотреть главы в:

Теоретическая механика  -> Вывод закона тяготения Ньютона из законов Кеплера



ПОИСК



ВЫВОДЫ ИЗ ЗАКОНОВ КЕПЛЕРА

Вывод

Вывод закона Ньютона из законов Кеплера

Вывод-вывод

Закон Ньютона,

Закон тяготения

Закон тяготения Ньютона

Законы Кеплера

Кеплер

Кеплера законы тяготения

Ньютон

Ньютона закон (см. Закон Ньютона)

Ньютона) тяготения Ньютона

Тяготение



© 2025 Mash-xxl.info Реклама на сайте