Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Холодильные Трубы

Холодильники газа дистилляции (холодильные трубы), абсорберы  [c.237]

Конденсаторы дистилляции (холодильные трубы), теплообменники дистилляции, сепараторы  [c.237]

Для изготовления радиаторных и холодильных труб, гильз и т. п. применяют а-латуни, причем латуни Л96 и Л90 применяют главным образом для радиаторных труб. Эти латуни обладают высокой теплопроводностью, так как увеличение содержания цинка понижает теплопроводность (и электропроводность) меди.  [c.400]

На эстакаде 11 смонтирована холодильная установка, включающая холодильную трубу 2, проходящую через резервуар 3 с жидким азотом. Резервуар 3 помещен в контейнер 12. Между стенками резервуара и контейнера уложена теплоизоляция 13. В нижней части контейнера имеется специальный горизонтальный направляющий лоток 14, в котором установлен толкатель 6 для подачи вкладышей в распределительные лотки 5. Оттуда вкладыши следуют к фиксирующим приспособлениям 9. Толкатель, 6 управляется пневматическим цилиндром 4.  [c.163]


Вкладыши из бункера (на рисунке не показан) попадают в холодильную трубу 2, в которой они по мере прохождения вниз охлаждаются до заданной температуры (труба проходит через резервуар 3, заполненный жидким азотом). При подаче И  [c.163]

Конструктивной особенностью описанной холодильной установки является то, что вкладыши охлаждаются в холодильной трубе 2 без непосредственного соприкосновения с жидким азотом. Пары отработавшего азота (стрелки на рисунке) отводятся из резервуара 3 в атмосферу через патрубок 1.  [c.164]

Вихревые термотрансформаторы Ранка, или вихревые трубы получили, пожалуй, самое большое распространение несмотря на достаточно низкую по сравнению с изоэнтропным детандером термодинамическую эффективность процесса перераспределения энергии между свободным и вынужденным вихрями. Прикладные вопросы расчета, проектирования и технического приложения вихревых холодильно-нагревательных аппаратов разработаны достаточно широко, хотя и не в полном объеме. Многочисленные работы, опубликованные в основном в периодических изданиях, несколько монографий по вихревому эффекту, патентная информация открывают большие возможности для совершенствования традиционных и освоения новых областей применения вихревого эффекта в целом и вихревых труб в частности. Успехи практического применения вихревого эффекта снизили интерес исследователей к более глубокому изучению этого чрезвычайно сложного явления газодинамики, физическая природа которого, а, следовательно, и исчерпывающий комплекс характерных особенностей, остаются пока до конца неизученными. Особенно мало публикаций по вихревому эффекту, связанных с изучением микро- и макроструктуры потока с использованием современных средств диагностики закрученных потоков. В определенной степени это объясняется не совсем правильным сло-  [c.28]

Важной характеристикой качества энергоразделения в вихревых трубах, используемых как холодильные устройства, является полная удельная энтальпия охлажденного потока В безразмерном виде ее можно рассчитать по зависимости  [c.201]

Следует заметить, что т несет в себе лишь расчетную нагрузку в отличие от rj,, которая имеет определенный физический смысл при оценке совершенства холодильной машины с вихревым расширительным устройством в сравнении с изоэнтропным идеальным детандером. Обычно в техническом задании на расчет должны быть заданы потребная температура и расход подогретых масс газа на выходе из вихревой трубы и технические характеристики источника сжатого газа давление , допустимый расход G, температура сжатого газа Г, (например  [c.226]


Исходными данными при расчете двухконтурной вихревой трубы является глубина охлаждения и снимаемый теплосъем Q , который в конечном итоге совместно с теплопотерями должен определить потребную холодопроизводительность разрабатываемого устройства — вихревого холодильного агрегата (ВХА). Если давление среды, где размещен охлаждаемый объект, отличается от атмосферного, то его конкретное значение так же входит в условия однозначности, т. е. должно быть задано Р . В противном случае принимается, что давление холодного потока равно атмосферному давлению.  [c.227]

Сжатый газ из магистрали поступает в сопло закручивающего устройства вихревой трубы /, где разделяется на два результирующих потока — охлажденный и подогретый. Охлажденный поток через вентили 4 н 5 поступает в холодильные камеры 2 и 3.  [c.231]

Осуществляя газодинамическую связь между камерами разделения двух отмеченных труб, один из потоков можно использовать для формирования дополнительного потока промежуточного давления второй трубы [145]. Регенеративный вихревой холодильный аппарат, выполненный по такой схеме, показан на рис. 5.6. Газодинамическая связь состоит в том, что горячий поток разделительной вихревой трубы 1 используется в качестве дополнительного потока вихревой трубы 2, холодильный поток которой вместе с отработавшим в камере холода рабочим потоком используется в регенеративном теплообменнике 2 для охлаждения исходного сжатого газа, питающего низкотемпературную разделительную вихревую трубу 1.  [c.236]

Для термодинамического расчета характеристик схем вихревых холодильных, холодильно-нагревательных агрегатов, термостатов используется система, включающая в себя уравнения процесса в вихревых трубах, уравнения теплового баланса энергии отдельных узлов схемы и всей схемы в целом. Тогда с учетом принятых обозначений расчетных сечений 3—11 (см. рис. 5.6) система уравнений, описывающая работу исследуемой схемы, запишется в виде  [c.236]

Повысить эффективность вихревой трубы как расширительного устройства воздушно-компрессионных холодильных машин можно увеличением ее холодопроизводительности путем отвода энергии в форме тепла от периферийных подогретых масс газа и формировании приосевого потока на относительно больших значениях ц из более холодных элементов.  [c.288]

Ф и г. 6. Возможная схема незамкнутого цикла холодильной машины при использовании для расширения вихревой трубы.  [c.13]

Фиг. 7. Идеализированная индикаторная диаграмма работы холодильной машины с незамкнутым циклом при использовании для расширения вихревой трубы. Фиг. 7. <a href="/info/332838">Идеализированная индикаторная диаграмма</a> работы <a href="/info/898">холодильной машины</a> с незамкнутым циклом при использовании для расширения вихревой трубы.
Некоторые показатели действительного холодильного воздушного цикла с вихревой трубой (Тс=20° С, Pi=l атм, атм)  [c.15]

Холодильный коэффициент цикла с вихревой трубой, найденный по (3.3) при Гд=0° С....................  [c.15]

Относительный к. н. д. т ти- цикла с вихревой трубой по сравнению с газовой холодильной машиной с адиабатическим расширением  [c.15]

В холодильных камерах пристенные охлаждающие батареи располагают под потолком, чтобы нисходящий поток холодного воздуха, образовавшийся около труб, опускаясь вдоль стены камеры, образовывал холодный воздушный экран, препятствующий проникновению теплоты в камеру извне. Различают теплообмен при свободной конвекции в неограниченном и ограниченном пространствах.  [c.96]

Положительный опыт длительней эксплуатации труб из ATH-I позволил рекомендовать антегмит в качестве.конструкционного материала холодильных труб конденсатора дистилляции. В содовом производстве начато примевение труб из АТМ-1 в теплообменвой аппаратуре. Б настоящее время  [c.23]

Чаще всего вихревую трубу используют как устройство для получения охлажденных масс газа, т.е. как расширитель газокомпрессионной холодильной машины, эффективность которой существенно выше эффективности дроссельной. Это определяет и те внешние интегральные характеристики оценки термогазодинамического совершенства вихревых труб, широко используемые исследователями. В первую очередь к ним необходимо отнести абсолютные эффекты снижения температуры охлажденного  [c.43]


Существует характерная степень расширения в вихревой трубе (или относительная доля охлажденного потока) (рис. 4.11), при которой кинетическая энергия вынужденного вихря становится больше исходной. На режимах вращения вынужденного вихря отстает от закона вращения твердого тела — со = onst. Избыточная кинетическая энергия свободного вихря расходуется на трение о стенки (работа внешних поверхностных сил) и на работу внутренних поверхностных сил. При турбулентном течении пульсационное движение непрерывно извлекает энергию из ос-редненного движения. Эта чдсть энергии обеспечивает работу переноса турбулентных молей в поле радиального фадиента статического давления [121, 122]. Если допустить, что под действием турбулентности перемещаются среднестатистические турбулентные моли с массой dm, совершающие элементарные циклы парокомпрессионных холодильных машин, то можно найти работу, затраченную на их реализацию. Объем турбулентного моля и путь его перемещения невелики по сравнению с контрольным объемом П, поэтому изменение температуры при изобарных процессах теплообмена моля с окружающими его частицами незначительно. Это позволяет, не внося существенной погрешности, заменить цикл Брайтона циклом Карно. Тогда работа по охлаждению выделенного контрольного объема П равна сумме элементарных работ турбулентных молей  [c.206]

Сжатый воздух из магистрали через патрубок 1, силикагелевый осушитель 2, теплообменник 3 подается на вход в сопловой ввод закручивающего устройства вихревой трубы 4. Охлажденный в вихревой трубе 4 поток через отверстие диафрагмы 5, щелевой диффузор 6 поступает в камеру холода 7, где осуществляет необходимый теплосъем от охлаждаемого объекта. Из камеры холода 7 через кольцевую полость 5 и второй контур теплообменного аппарата отработавший охлажденный поток отсасывается эжектором 9 в атмосферу. В качестве активного газа в эжекторе 9 используется подогретый поток, истекающий из вихревой трубы. Режим работы вихревой холодильной камеры ХК-3 регулируется изменением относительной доли охлажденного потока с помощью регулировочной иглы 10, управляемой сектором 11. Охлаждаемый вихревой камерой объем тщательно изолируется крышкой 12, снабженной резиновым уплотнением и зажимным винтом. Вакуум в холодильной камере, создаваемый эжектором, способствует повышению поджатия крышки и надежности уплотнения. Наличие в замкнутом объеме холодильной камеры под теплообменным аппаратом 3  [c.234]

Свойство вихревых труб одновременно создавать из исходного потока сжатого газа два результирующих, из которых один — подогретый, а второй — охлажденный, как нельзя более удачно подходит для создания вихревых холодильно-нагревательных установок и термостатов [15, 35, 111, 116, 117, 145, 154, 204]. В схемах вихревых холодильно-нагревательных установок и термостатов, как и в схемах холодильных агрегатов, необходимо осуществлять принцип максимально возможной утилизации всех энергоресурсов. В работе [116] приведена схема конструкции бескрано-вого вихревого термостата ВТ-4 (рис. 5.10). Сжатый воздух из магистрали поступает через патрубок 1 в полость спирального про-тивоточного теплообменника 2, где охлаждается и подается на вход в вихревую трубу 3. Охлажденный поток, вытекающий из  [c.239]

В рассматриваемой схеме (рис. 5.11) неиспользованные в рабочей камере хладо- или теплоресурсы утилизируются в теплообменнике, охлаждая или подогревая в зависимости от режима сжатый газ, поступающий на вход в противоточную разделительную вихревую трубу. Вихревой холодильно-нагревательный агрегат (ВХНА) состоит из термокамеры 7, противоточной разделительной вихревой трубы 2, двухконтурной вихревой трубы 3, эжектора-глушителя 4, теплообменника 5, нагревателя 6, воздушных электроклапанов 7—10.  [c.243]

Энергозатраты на сжатие газа для производства единицы холода примерно в 8-10 раз больше энергозатрат на ее производство в холодильных машинах парокомпрессионного цикла, примерно в 3-4 раза ее производства в разомкнутых газовых циклах и в 2 раза — в замкнутых газовых циклах. Это требует особой тщательности в обосновании экономической целесообразности применения в схемах охлаждения, кондиционирования и термостатирования вихревых труб. В некоторых случаях технико-экономическое обоснование позволяет отдать предпочтение схемам с вихревыми энергоразделителями.  [c.263]

На рис. 106 дана схема возду)]пюп холодильной установки охлаждаемое помещение /, или холидилышя камера, в которой по трубам циркулирует охлажденный во здух компрессор 2, всасывающий этот во.здух и сжимающий его охладитель 3, в котором охлаждается сжатый в компрессоре воздух расширительный цилиндр 4, в ко-  [c.262]

Влияние скоросм воды и шага труб на температурное поле холодильной плиты  [c.115]

Холодильный коэффициент вихревой трубы. Для определения S вихревой трубы, используемой в качестве газовой холодильной машины с незам-  [c.13]

Интересно сравнить значение холодильного коэффициента вихревой трубы вихр.- определяемое по формуле (3.3), со значением холодильного коэффициента газовой машины с незамкнутым циклом (использующей адиабатическое расширение газа), подсчитанным по формуле (1.4). Отметим, что если бы при вычислении k машины с адиабатическим расширением мы пренебрегли бы работой, отдаваемой детандером, то было бы равно  [c.14]

Для адиабатического сжатия формула (3.3.) дает величину вихр. =0,07. Это значение следует сравнить со значениями коэффициентов и k газовой холодильной машины с адиабатическим расширением, работающей при тех же температурах Т и Т . Величина представляет собой значение холодильного коэффициента машины, не использующей работу расширения. Вычисление дает = 0,45 и S = 0,97. Отсюда видно, что цикл с вихревой трубой обладает значительно меньшим холодильным коэффициентом, чем обычный цикл газовой холодильной машины. Относительный к. п. д. цикла с вихревой трубой ио сравнению с газовой холодильной машиной Т отн. = вихр./ составляет, следовательно, 7,3%. Поскольку онисанпые выше газовые холодильные машины обладают небольшими к. п. д. по сравнению, например, с паровыми компрессионными машинами, представляется маловероятным, чтобы вихревые трубы приобрели большое практическое значение, за исключением тех случаев, когда необходимым требованием является предельная простота конструкции.  [c.15]


Различают кипение в объеме жидкости (объемное кипени е) и на поверхности нагрева (поверхностное кине и и е). В первом случае пузырьки пара возникают непосредственно в объеме жидкости при значительном ее перегреве относительно температуры насыщения, что возможно или при резком понижении давлепия над жидкостью, пли при наличии в жидкости внутреи[1их источников теплоты. В случае поверхностного кипения пузырьки пара образуются только на поверхности нагрева в отдельных ее точках. Для современной теплоэнергетики и холодильной техники характерно поверхностное кипение на стенках труб и каналов, в связи с чем именно этот вид кипения и рассматривается далее.  [c.100]

ООО режим движения среды — переходный. Как правило, в аппаратах холодильных машин при обычиь х условиях эксплуатации характер движения воды в трубах — турбулентный, а рассолов — ламинарный или переходный.  [c.187]

Аппараты холодильных машин часто конструируют в виде пучков труб, омываемых поперечным потоком среды. ]Засположе-ние труб в пучке может быть коридорным или и а х м а т -  [c.191]


Смотреть страницы где упоминается термин Холодильные Трубы : [c.166]    [c.381]    [c.1193]    [c.384]    [c.467]    [c.437]    [c.46]    [c.232]    [c.395]    [c.174]    [c.189]    [c.173]    [c.400]    [c.400]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.0 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте