Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Профиль подводного крыла

Стремление создать профиль подводного крыла, свободный от кавитации, привело к развитию идеи клиновидного профиля (рис, 10, а) (Г. В. Логвинович и Е. А, Федоров,. 1954—1956). Суть дела заключается в следующем. На гранях симметричного клина, обтекаемого с каверной за ним (задача Бобылева), господствует положительное динамическое давление. Искривление оси клина приводит к уменьшению давлений на выпуклой стороне и к повышению на вогнутой. Возникает подъемная сила, но если на выпуклой стороне искривленного клина давление остается положительным, кавитация там не возникает выяснилось, что отгибы задних кромок способствуют затяжке возникновения кавитации на больших углах атаки.  [c.53]


Эта задача имеет практический смысл — позволяет исследовать движение высокоскоростных судов на подводных крыльях (обтекание кавитирующего профиля под свободной поверхностью). Для упрощения решения задачи предположим, что обтекание происходит при больших числах Фруда и поэтому на свободной поверхности горизонтальная составляющая скорости равна скорости потока на бесконечности.  [c.108]

Подобным образом трактуется эффект подъемной силы в обращенном движении при обтекании профиля крыла самолета или судна на подводных крыльях (рис. 57). В 1906 г.  [c.91]

Начала гидродинамики, послужившие основой для развития теории движения жидкостей с большими скоростями, можно отметить уже в работах Н. Е. Жуковского о струйных течениях и о волновом сопротивлении, а также в работах С. А. Чаплыгина по теории неустановившихся движений профиля крыла в плоскопараллельных потоках, В дальнейшем, начиная с 1932 г., теория неустановившихся движений жидкости и движений тел с большой скоростью в жидкости разрабатывалась в ЦАГИ, где и были заложены основы теории удара о воду, теории волнового сопротивления, теории глиссирования и подводного крыла.  [c.37]

Плоское безвихревое движение идеальной несжимаемой жидкости является одним из наиболее изученных и в известной степени законченных разделов механики жидкости. В настоящем курсе пришлось по необходимости полностью опустить такие важные вопросы этого раздела, как нестационарное движение крылового профиля, в частности в тяжелой жидкости под свободной поверхностью (подводное крыло), волновые движения, импульсивные движения, разрывные движения в тяжелой жидкости и др. Все эти вопросы с достаточной полнотой освещены в ранее уже цитированных общей монографии Л. И. Седова Плоские задачи гидродинамики и аэродинамики и специальных монографиях М. И. Гуревича и Л. И. Некрасова, а также в ч. I курса Теоретическая гидромеханика Н. Е. Кочина, И. А. Кибеля и  [c.277]

В настоящее время активно развиваются методы решения задач генерации поверхностных гравитационных волн поступательно движущимся телом, позволяющие учитывать нелинейность граничных условий на свободной поверхности и контуре. Полученные результаты в значительной мере отражены в обзорных работах [1-3]. Наибольшие успехи достигнуты при обтекании особенностей [4—7]. Рассмотрение цилиндрических форм при нелинейных граничных условиях было начато в [8]. Среди последних работ этой области отметим исследования [9, 10]. Применению так называемой двойной модели [11], связанной с введением зеркально отображенного контура, посвящены работы [12-14]. Обтекание тонкого профиля по схеме возмущений [15] рассматривалось в [16, 17]. Границы применимости теории возмущений подробно исследованы в [4]. Тонкий профиль в полной нелинейной постановке исследовался в [18]. Методы конечных и граничных элементов для решения задачи о движении подводного крыла применялись в [19, 20]. В [21, 22] предложен метод для вычисления полностью нелинейного течения около подводного крылового профиля, в котором решение опирается на панельный метод высокого порядка.  [c.165]


Предел ные значения X (по данным XdpbKOB Koro машиностроительного института) для тонких профилей сегментного и авиационного типов, при котором можно ещё использовать крыло, примерно 0,6, что соответствует скорости v = = 67 HMjHa . При V 85 — 90 HMjHa качество падает вдвое, что и является пределом-использования подводных крыльев.  [c.431]

Наиболее важными формами в приложении к аппаратам с подводными крыльями, винтам и агрегатам, преобразующим энергию, являются профили, на которых отрыв потока происходит обычно на острых передней и задней кромках. Тонкие профили, обладающие этим свойством, исследовались теоретически и экспериментально в режиме суперкавитации при /(>0. В общем случае в условиях развитой кавитации (когда каверна длиннее хорды гидропрофиля) коэффициент подъемной силы уменьшается, а коэффициент лобового сопротивления возрастает по сравнению с соответствующими значениями при бескавитационном обтекании. С уменьшением параметра К коэффициенты Сь и Св уменьшаются до их предельных значений, соответствующих значению /С=0. С уменьшением К каверна удлиняется. Теоретически при /(=0 она должна простираться в бесконечность. С помощью метода Тулина получены линеаризованные решения для класса профилей малой, но произвольной кривизны, в том числе для дуги окружности и плоской пластины. В табл. 5.5 собраны результаты расчетов плоских пластин и профилей, образованных дугами окружностей, при К = 0 и /(>0, заимствованные из работ [25, 28, 39, 85, 94]. Согласно этим результатам, Сь и Сд стремятся к предельным значениям при /С = 0. Предельные значения для плоской пластины совпадают с точным решением, полученным на основе теории течений со свободными линиями тока, развитой Кирхгофом и Рэлеем [48], вплоть до членов, содержащих квадрат угла атаки. Предельное значение коэффициента подъемной силы, полученное при /С=0, состав-  [c.242]

Зобнин А.Н. Исследование структуры вихревого следа за профилем с угловой кромкой в начальной стадии отрывного обтекания // Гидродинамика подводного крыла. - Новосибирск, 1986. - С. 71-84.  [c.482]

Экспериментальные исследования позволили выяснить существенные особенности гидродинамики подводных крыльев. Так, например, было выяснено, что подводное крыло, движущееся вблизи поверхности, должно обладать острой передней кромкой. Крыло авиационного профиля в этих условиях непригодно, поскольку после кратковрёменного выхода на поверхность воды оно в дальнейшем некоторое время обтекается с отрывом струй и теряет значительную часть подъемной силы. Существенно, что в режиме саморегулирования глубины хода крыло погружено на малые доли хорды ( /з — /g) и двигается при столь больших числах Фруда,  [c.53]


Смотреть страницы где упоминается термин Профиль подводного крыла : [c.40]    [c.54]   
Аэродинамика решеток турбомашин (1987) -- [ c.40 ]



ПОИСК



Крылов

Крылья подводные

Профиль крыла

Профиль крыловой



© 2025 Mash-xxl.info Реклама на сайте