Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Критический диаметр цилиндрической стенки

Рис. 2.10. К определению критического диаметра цилиндрической стенки Рис. 2.10. К определению <a href="/info/1575">критического диаметра</a> цилиндрической стенки

КРИТИЧЕСКИЙ ДИАМЕТР ЦИЛИНДРИЧЕСКОЙ СТЕНКИ  [c.40]

Критический диаметр цилиндрической стенки 280  [c.427]

Каков физический смысл критического диаметра изоляции Это — комплексный параметр процесса теплопередачи через цилиндрическую стенку, указывающий. путь к правильному выбору материала для тепловой изоляции.  [c.338]

В прил. 8 коэффициенты истечения ф,е, 1 для цилиндрических насадков приведены при безотрывном режиме истечения. В этом случае диаметр струи на выходе из насадка равен диаметру отверстия. При критическом напоре для внешнего цилиндрического насадка струя после сжатия уже не расширяется, а сохраняет цилиндрическую форму и перемещается внутри насадка, не соприкасаясь с его стенками. Истечение становится точно таким же, как и из отверстия в тонкой стенке, с теми же значениями коэффициентов.  [c.183]

С учетом полученных экспериментальных данных [131 рассчитан цилиндрический сосуд диаметром 4 м, толщиной стенки 20 мм, нагружаемый внутренним давлением 1,4 МПа при температуре эксплуатации -20 С. Расчет проведен для геометрии трещины на внутренней стенке а/е = 2/3 (см. рис. 4.47). Критический коэффициент интенсивности напряжений связан с глубиной трещины а соотношением  [c.203]

Перепад давления на наружной стенке вызывает напряжения сжатия, являющиеся потенциальным условием потери устойчивости оболочки. Учитывая, что наружная стенка жаровой трубы является тонкостенной оболочкой средней длины (длина 300. .. 500 мм, диаметр 700. .. 1000 мм, толщина стенки 0,8. .. i,5 мм), а ее температура в рабочих условиях равна 800. .. 900 °С и выше, необходимо проводить расчеты по определению критического давления и оценке устойчивости. Наружную стенку жаровой трубы, состоящую из отдельных секций с отверстиями, принимают в расчетах как цилиндрическую тонкостенную оболочку без отверстий. Увеличение жесткости стенки, образующейся на стыках секций в местах подвода охлаждающего жаровую трубу воздуха, заменяют кольцевыми ребрами жесткости (см. рис. 8.29).  [c.441]

Нижний конус имел угол раствора 60° и переходил в сопло длиной 600 мм, изготовленное также из листа никеля толщиной 0,95 мм. Диаметр критического сечения составлял 60 мм, диаметр среза — 137 мм. Между верхним 45°-ным конусом и цилиндрической частью камеры располагалось плоское кольцо, выступавшее внутрь камеры на 30 мм. К кольцу крепился все тот же "инвертированный" конус с углом раствора 45°. И кольцо и конус имели облицовку из огнеупорного материала. На вершине инвертированного конуса на специальном стержне крепилась форсунка окислителя, а также ее дефлектор диаметром 19 мм. Бензин входил через два диаметрально противоположенных тангенциальных отверстия, расположенных на 20 мм ниже стыка кольца и камеры, и создавал на стенке жидкостную пленку.  [c.35]


Уменьшить термическое сопротивление теплоотдачи можно не только за счет увеличения а. При рассмотрении понятия критического диаметра цилиндрической стенки было установлено, что при неизменном значении ог термическое сопротивление теплоотдачи падает с увеличением внешней теплоотдающей поверхности. Этот принцип положен в основу интенсификации теплопередачи за счет оребрения поверхности с низкой тенлоотдачей.  [c.340]

В ноябре 1987 г. при остановке технологической линии произошло лавинообразное разрушение корпуса теплообменника, находившегося под действием внутреннего давления. В момент, предшествовавший разрушению, поток среды в межтрубном пространстве аппарата отсутствовал, однако в корпусе сохранялось рабочее давление (вероятнее всего, жидкой фракции). Теплообменник представлял собой горизонтальный цилиндрический аппарат с двумя неподвижными трубными решетками, сферическими днищами и компенсатором на трубной части. Он был рассчитан на эксплуатацию в некоррозионной среде под давлением в корпусе 3 МПа, в трубной части — под давлением 3,8 МПа при температуре минус 18°С. Корпус, днища и трубные решетки аппарата изготовлены из стали 09Г2С. Размеры теплообменника длина (между трубными решетками) 5000 мм диаметр 1200 мм толщина стенки корпуса 20 мм. В соответствии с технологической схемой обвязки Т-231 теплообменник эксплуатировался при температуре минус 36 С. Исследования показали, что зарождение и докритический рост трещины, вызвавшей разрушение корпуса, произошли на оси кольцевого шва обечайки в зоне приварки штуцера входа этано-вой фракции. Трещина развивалась вдоль оси кольцевого шва, и по достижении критической длины (200 мм) произошел переход к лавинообразному разрушению с разветвлением трещины  [c.50]

Обсуждение экспериментальных данных работы [46]. В этой работе исследуется влияние повышенных температур на критические нагрузки при осевом сжатии изготовленных методом мокрой комбинированной намотки цилиндрических оболочек из стеклопластика на эпоксидно-фенольном связующем и стеклонитей НС 150/2. Объемное содержание связующего около 40%. Схема армирования— [0/90/0] Г. Диаметр оболочек 140мм, длина 140 мм, толщина стенки 0,45 мм. Испытания проводили на универсальной испытательной машине RS-2, обеспечивающей постоянство скорости нагружения и электронную запись диаграмм нагрузка-перемещение активной траверсы с помощью индуктивных датчиков.  [c.301]

Второе экспериментальное подтверждение формулы для определения критической длины трещины получено при испытаниях, проведенных Гетцем и др. (1963 г.) на сосудах под давлением диаметром 152 мм из алюминиевого сплава 2014-Т6. Толщина стенки образцов 1,5 мм. В этих испытаниях использовали плоские пластины с надрезом и цилиндрические сосуды. В цилиндрических сосудах со сквозными трещинами создавали давление до разрушения. Значения Ксг подсчитывали при испытании на растяжение плоских пластин (для определения вязкости разрушения использовали образцы с центральным надрезом). По результатам испытаний цилиндрических сосудов построена кривая зависимости разрушающего напряжения от длины трещины с применением уравнения (15) при Ксг = onst. На рис. 5 представлены результаты вычислений. Штриховая линия построена на основании результатов испытания плоской пластины, скорректированных для пластины ограниченной ширины . Сплошная линия построена по результатам испытания цилиндрических сосудов, причем темными кружочками показаны отдельные результаты испытаний цилиндрических сосудов. Как можно обнаружить, кривые, построенные на основании уравнения (15), хорошо согла-еуются с результатами отдельных испытаний цилиндрических сосудов. Уровень вязкости для этих испытаний на алюминиевых образцах составил 189 кгс/мм /.  [c.163]

В следующей своей работе [82] Тода приводит данные о теоретическом исследовании устойчивости цилиндрических оболочек при осевом сжатии. Критическое напряжение и -форма потери устойчивости определялась на основе линейных соотношений Доннелла в перемещени ях. Результаты хорошо согласовались с ранее опубликованными данными численного конечно-элементного анализа и экспериментами для цилиндрических оболочек с круговыми, эллиптическими, квадратными и прямоугольными вырезами. В работе [83] Тода приводит дополнительные данные об экспериментах над оболочками с двумя круговыми вырезами, расположенными в средней части на концах одного диаметра. Опытные образцы изготавливались из майлара, латуни и алюминия. В работе иследов о влияние на критическую нагрузку параметра где а — радиус выреза, R — радиус цилиндрической оболочки, t — толщина стенки. Теоретическое подтверждение выводов, основанных на эксперименте и числовом расчете, дается для одного случая. Критическая нагрузка для тонкой цилиндрической оболочки с большими значениями R/i для рассмотренного диапазона размеров отверстия (a/i 1) определяется параметром а. Для а < 1 влияние выреза мало, однако из-за обычных начальных несовершенств разброс критической нагрузки большой в диапазонеКа< 2 влияние выреза возрастает, критическая нагрузка резко уменьшается. При а >2 с увеличением выреза критическая нагрузка медленно снижается, разброс экспериментальных  [c.302]


Лавинообразное разрушение корпуса теплообменника, находившегося под действием внутреннего давления, произошло в ноябре 1987 г., при остановке технологической линии. В момент, предшествующий разрушению, потока среды в межтруб-ном пространстве аппарата не было, однако в корпусе сохранялось рабочее давление (вероятнее всего жидкой фракции). Теплообменник представлял собой горизонтальный цилиндрический аппарат с двумя неподвижными трубными решетками, сферическими днищами и компенсатором на трубной части. Он рассчитан на эксплуатацию с некоррозионной средой под давлением в корпусе 3 МПа, в трубной части 3,8 МПа при температуре -18 °С. Корпус, днища и трубные решетки аппарата изготовлены из стали 09Г2С. Размеры теплообменника длина (между трубными решетками) 5000 мм диаметр 1200 мм толщина стенки корпуса 20 мм. В соответствии с технологической схемой обвязки Т-231 теплообменник эксплуатировался при температуре-36 °С. На основании анализа результатов исследований установлено следующее. Зарождение и докритический рост трещины, вызвавшей разрушение корпуса теплообменника, произошли на оси кольцевого шва обечайки в зоне приварки штуцера входа этановой фракции. Трещина развивалась вдоль оси кольцевого шва, и при достижении критической длины (200 мм) произошел переход в лавинообразное разрушение с разветвлением трещины по трем направлениям вдоль шва и в обе стороны поперек оси шва по основному металлу. Химический состав и механические свойства основного металла 09Г2С корпуса теплообменника в основном соответствовали требованиям НД. Температура перехода материала днища (Т50) в хрупкое состояние по данным серийных испытаний составила -20 °С. Для материала обечайки она составляет от О до -20 °С. При температуре -40 °С вязкая составляющая в изломе отсутствовала. Механические свойства металла швов и сварных соединений отвечали требованиям, предъявляемым НД к качеству сварных соединений сосудов и аппаратов.  [c.51]


Смотреть страницы где упоминается термин Критический диаметр цилиндрической стенки : [c.175]    [c.569]   
Смотреть главы в:

Теплопередача Изд.3  -> Критический диаметр цилиндрической стенки

Теплопередача  -> Критический диаметр цилиндрической стенки

Теплотехника  -> Критический диаметр цилиндрической стенки


Теплотехника (1985) -- [ c.280 ]



ПОИСК



Критический диаметр

Т цилиндрической стенки



© 2025 Mash-xxl.info Реклама на сайте