Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Динамика статистическая Методы решения корреляционные

В предьщущих разделах бьши рассмотрены только первые два момента теории случайных функций — математическое ожидание и корреляционная функция. К сожалению, далеко не все прикладные задачи могут быть решены методами корреляционной теории - например, часто возникающая при анализе динамических систем задача об определении вероятности превышения ординаты случайной функции заданных значений. Эти задачи можно решить, если ограничиться процессами, обладающими некоторыми специальными свойствами, но представляющими практический интерес. В предьщущих параграфах методы корреляционной теории использовались для анализа систем с линейной связью между входом и выходом. В этом случае корреляционная теория дает возможность получить вероятностные характеристики решения дифференциальных уравнений, если известны вероятностные характеристики возмущений. Получить решение нелинейных уравнений методами корреляционной теории нельзя. Однако, если ограничиться процессами, обладающими специальными свойствами, можно получить решение и для нелинейных задач статистической динамики. К таким процессам относят марковские процессы, для полной характеристики которых достаточно знать только двумерные законы распределения.  [c.123]


Подведем итоги. Мы убедились в том, что с точки зрения общей теории неравновесных процессов стандартный метод временных функций Грина основан на граничном условии полного ослабления корреляций в отдаленном прошлом, которое эквивалентно граничному условию Боголюбова к цепочке уравнений для классических функций распределения или квантовых многочастичных матриц плотности. Как мы знаем, при таком выборе граничного условия корреляционные эффекты проявляют себя как эффекты памяти в кинетических уравнениях. Поэтому марковские кинетические уравнения, получаемые в стандартном методе функций Грина, применимы только к системам, которые достаточно хорошо описываются в рамках модели слабо взаимодействующих квазичастиц. Для систем с сильными корреляциями нужно вводить новые граничные условия, учитывающие динамику корреляций в системе. Обратим внимание на то, что предельные значения (6.3.108) временных функций Грина выражаются через квази-равновесные функции G , в которых усреднение производится со статистическим оператором зависящим от времени через макроскопические наблюдаемые Р У. Таким образом, соотношение (6.3.108) показывает, что в общем случае предельные гриновские функции зависят от макроскопической эволюции системы. Иначе говоря, уравнения движения для временных гриновских функций должны рассматриваться совместно с уравнениями переноса для Р У. В параграфе 4.5 первого тома был рассмотрен пример такого объединения квантовой кинетики с теорией макроскопических процессов в методе неравновесного статистического оператора. Соответствующая техника в методе функций Грина пока не разработана, так что читателю предоставляется возможность внести свой вклад в решение этой проблемы.  [c.62]


Смотреть страницы где упоминается термин Динамика статистическая Методы решения корреляционные : [c.4]   
Прочность Колебания Устойчивость Т.3 (1968) -- [ c.515 , c.516 , c.523 , c.538 ]



ПОИСК



Динамика статистическая

Динамика статистическая Методы решения корреляционные — Применение при

Метод статистический

Метод статистических решений

Методы корреляционный

Методы решения Методы решения корреляционные

Решения метод



© 2025 Mash-xxl.info Реклама на сайте