Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кристалл, идеализированная модель

Кристалл, идеализированная модель 3,10 Кубо формула 13,10, 24,9 Кюри температура 12,3, 12,8, 13,13  [c.633]

Реальные кристаллы отличаются от идеализированной модели наличием достаточно многочисленных нарушений регулярного расположения атомов. Любое отклонение от периодической структуры кристалла называют дефектом. Дефекты структуры оказывают существенное, порой определяющее, влияние на свойства твердых тел. Такими структурно-чувствительными, т. е. зависящими от дефектов структуры, свойствами являются электропроводность, фотопроводимость, люминесценция, прочность и пластичность, окраска кристаллов и т. д. Процессы диффузии, роста кристаллов, рекристаллизации и ряд других можно удовлетворительно объяснить исходя из предположения об их зависимости от дефектов. В  [c.84]


Идеализированная модель кристалла удовлетворительно объясняет, в частности, те свойства, которые определяются взаимодействием электронов с полем, создаваемым ионами, например упругие характеристики, в значительной мере электропроводность и теплопроводность (хотя они и меняются под влиянием дефектов), оптические свойства, некоторые магнитные свойства и др. В то же время многие важные свойства металлов и протекающие в них процессы определяются отклонениями от правильной структуры пластическая деформация и упрочнение, особенности роста кристаллов, диффузия и многие другие.  [c.36]

Еще одной распространенной идеализацией является взаимодействие света с совершенно гладкой поверхностью, на которой отсутствует шероховатость. В этом случае в отраженном пучке нет диффузной (рассеянной) компоненты, присутствует только зеркальная составляющая. Полированные поверхности кристаллов и стекол обычно являются хорошим приближением к модели гладкой поверхности, при этом различия между поведением реальной поверхности и ее идеализированной модели уменьшаются с ростом длины волны.  [c.24]

По многим причинам неупорядоченное расположение атомов или молекул разного сорта в кристаллах представляет большой интерес для широкого круга ученых. Для физика-теоретика оно представляет один из примеров задачи упорядочения в трехмерной решетке подобно упорядочению спинов в ферромагнетике. Анализ упорядочения с точки зрения статистической механики начинается с идеализированной модели Изинга и не идет дальше приближенных или асимптотических решений [43].  [c.367]

Использованная здесь идеализированная модель предполагает прозрачный и оптически однородный кристалл, безграничный в поперечном сечении, и монохроматическую плоскую волну накачки. При нарушении этих условий формула (8), описывающая детальную частотно-угловую форму спектра, будет неверна. Например, если расходимость накачки А д много больше (см. (45)), то угловая ширина излучения с данной частотой будет иметь порядок A fl g, а интенсивность излучения в направлении синхронизма будет пропорциональна не а ll ov, где длина когерентности имеет порядок  [c.27]

Рассмотрим базисный набор из г точек в пространстве, называемый элементарной ячейкой. Если элементарная ячейка повторяется N раз, то получается периодический набор точек, называемый решеткой. Предположим, что в гЫ точках находятся атомы таким путем мы приходим к идеализированной модели кристалла. Если каждый атом является [3]-осциллятором, причем его внутренняя структура не рассматривается, то мы имеем идеальный кристалл с ЗгЛ степенями свободы. Каждой степени свободы соответствует так называемая мода, или тип, колебаний (д, ). Волновой вектор д принимает N значений индекс поляризации 8 принимает Зг значений.  [c.96]


Поскольку нас интересовали главным образом объемные характеристики металла, мы не учитывали наличия поверхностей и работали с идеализированной моделью бесконечного кристалла ). Это можно оправдать тем, что в типичном по своим размерам макроскопическом кристалле, содержащем примерно 10 атомов (по 10 атомов на длине каждой стороны), лишь один из 10 атомов лежит вблизи поверхности.  [c.353]

На рис. 6.4 рассмотрен механизм пироэффекта в простой модели одномерного полярного кристалла, состоящего из цепочки диполей (полярных молекул). Каждый из таких диполей (обозначен на рисунке стрелочкой) обладает спонтанным электрическим моментом. При отсутствии теплового движения (идеализированный случай 7=0) все диполи строго ориентированы и дают максимальную спонтанную поляризованность. По мере повышения температуры (7 i>0, а затем T2>Ti) тепловое хаотическое движение вызывает, lвo пep выx, частичное разупорядочение диполей, а во-вторых, термическое расширение кристалла. Оба эти механизма обусловливают уменьшение спонтанной поляризованности с ростом температуры (см. рис. 6.4,г).  [c.167]

Мы рассматривали до сих пор только систему волн, возникающую при вхождении падающего пучка через плоскую поверхность в полубесконечное периодическое поле кристалла. В дальнейшем мы рассмотрим специальные случаи, которые могут оказаться важными для реальных условий эксперимента. В случае относительно простой двухволновой модели существуют две ситуации, для которых можно быстро получить результат. Это случай Лауэ — прохождение (без рассеяния назад) через совершенную плоскопараллельную кристаллическую пластинку, бесконечно большую в двух измерениях, случай Брэгга — отражение от плоской поверхности полубесконечного кристалла. В разумных приближениях результаты для этих двух идеализированных случаев можно использовать для обсуждения широкого круга экспериментальных ситуаций.  [c.184]

Простейшее твердое тело — это, по-видимому, твердый аргон. Оп состоит из правильно расположенных нейтральных атомов с крепко связанными электронными оболочками. Эти атомы удерживаются вблизи друг друга силами Ван-дер-Ваальса, которые действуют в основном между ближайшими соседями в решетке. Физические процессы в таком кристалле связаны с тепловым движением атомов вблизи своих идеализированных положений равновесия. Для простейшего описания такого движения используется модель Эйнштейна, согласно которой каждый атом колеблется подобно простому гармоническому осциллятору в потенциальной яме, образованной силами его взаимодействия с соседями . Так начинается в книге Дж. Займана [1] глава Колебания решетки .  [c.60]

Другая идеализированная модель жидких полупроводников состоит из отдельных молекул, которые расположены достаточно далеко друг от друга, так что электронные уровни остаются дискретными. В противоположность двум рассмотренным моделям в этом случае мы имеем энергетические щели, но не имеем зон. Когда молекулы сближаются, дискретные уровни расширяются в зоны, которые могут быть онисаны приближением сильно связанных электронов. Как и в модели искаженного кристалла, можно ожидать перекрытия хвостов плотности состояний в области энергий между зонами, что приводит к образованию псевдощели, как это показано штриховыми линиями на рис. 5.1, а.  [c.87]

Полимерные материалы содержат молекулы, состоящие из очень большого числа одинаковых сегментов, химически связанных от одного конца до другого. Каждая макромолекула может либо состоять из одной неразветвленной цепочки, либо разветвляться на более короткие или более длинные побочные цепочки. Молекулы из отдельных цепочек обычно очень гибки (ср. со свойствами жидких кристаллов, 2.14), однако конденсированная полимерная фаза может оказаться более или менее жесткой за счет сшивки цепочек. Тогда образуется единая сетка (рис. 7.2) с многочисленными узлами, похожая на стекло ( 2.8). Вообще говоря, макро-молекулярные системы неохотно образуют большие правильные кристаллы чаще они представляют собой различные сложные типы топологически неупорядоченных систем, которые почти невозможно описать аналитически. Поэтому теория этих важных материалов носит в основном феноменологический характер, базируясь на математических особенностях несколько сильно идеализированных моделей. Для знакомства с фактической стороной дела читателю следует обратиться к книгам Волькенштейна [1] и Флори [2] или к многочисленным оригинальным работам в этой области.  [c.293]


Здесь не предполагается, что значительный по размерам участок земли может быть представлен как макрооднородная среда с кубической симметрией. Даже соляной купол представляет аморфную массу, а не единый кристалл галита. Однако регулярная упаковка сфер может рассматриваться в качестве идеализированной модели зернистых пород при этом простая кубическая упаковка может быть взята в качестве начального приближения. Поэтому целесо-  [c.52]


Смотреть страницы где упоминается термин Кристалл, идеализированная модель : [c.592]    [c.37]    [c.345]   
Задачи по термодинамике и статистической физике (1974) -- [ c.3 , c.10 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте