Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задачи динамические в сопротивлении материало

В сборнике представлены задачи на все основные разделы курса сопротивления материа.тов растяжение — сжатие, сложное напряженное состояние и теории прочности, сдвиг и смятие, кручение, изгиб, сложное сопротивление, кривые стержни, устойчивость элементов конструкций, методы расчета по допускаемым нагрузкам и по предельным состояниям, динамическое и длительное действие нагрузок.  [c.2]


Основной задачей теории контактирования является анализ статических и динамических процессов, происходящих на рабочей поверхности контактов. Сюда относятся вопросы определения переходного сопротивления и нагрева контактов, образования и разрушения пленок, электротермической эрозии и переноса материала, а также вопросы борьбы со слипанием и свариванием контактов.  [c.271]

Данное уравнение называют уравнением движения вершины трещины по той простой причине, что оно является обыкновенным дифференциальным уравнением по времени для координаты вершины трещины a(t) и напоминает по виду уравнение движения материальной точки в элементарной динамике. Уравнение (3.1) допускает точное решение лишь в некоторых простейших случаях некоторые следствия из этого уравнения будут рассмотрены в следующем параграфе. В данном параграфе акцент сделан на проблеме динамической вязкости разрушения. Особое внимание уделяется, в частности, предсказанию зависимости динамической вязкости разрушения от скорости движения вершины трещины путем исследования напряженно-деформированного состояния на расстояниях, намного меньших тех характерных размеров, на которых преобладающую роль играют поля, определяемые коэффициентом интенсивности напряжений. Не говоря уже о том, что решение данного вопроса интересно само по себе, оно очень важно и для исследования задач об остановке трещины и выявления связи микроструктуры материала с сопротивлением динамическому росту трещины.  [c.98]

В пособии, кроме основного материала по сопротивлению материалов, изложенного в соответствии с Программой Завода-втуза при ЛМЗ, приведены задачи по расчету коленчатых стержневых систем на прочность и жесткость, простых и толстостенных цилиндров, определению контактных напряжений, пространственному расчету кривого бруса на боковой изгиб и кручение и т. д. Рассмотрены динамические задачи  [c.2]

В машине энергия двигателя преобразуется сначала в механическую работу, а- затем в какой-либо другой вид энергии. В рабочей машине выполнение технологических трансформаций требует затраты некоторого количества механической работы, которая чаще всего обращается в теплоту, а затем рассеивается в процессе передачи силы от двигателя к месту воздействия инструмента на материал также затрачивается энергия на преодоление добавочных сопротивлений в виде сил трения и других сил, так что вся затраченная двигателем энергия в процессе действия рабочей машины расходуется на преодоление технологических и добавочных механических сопротивлений. В механизме технологические сопротивления отсутствуют и вся энергия двигателя идет на преодоление сопутствующих движению звеньев механизма сопротивлений в виде сил трения, сил тяжести звеньев и т. д. Если отвлечься от причины и характера сопротивления, а рассматривать сопротивления, появляющиеся в процессе работы механизмов и машин, только с количественной стороны, то методы статического и динамического расчетов механизмов, применяемых для воспроизведения заданных движений, и машин, в которых механизмы сообщают инструментам движения с целью получения заданной трансформации материала, могут быть одинаковыми. Поэтому в дальнейшем изложении не будем отличать механизм от машины, имея в виду, что различие их заключается лишь в применении, а не в структуре. Перейдем теперь к рассмотрению задач статики и динамики машин.  [c.354]


В работе [16] отмечается, что низкий непродолжительный отжиг полностью устраняет возникающий после предварительного растяжения эффект Баушингера, в то время как упрочнение еще сохраняется. Более глубокий отжиг приводит к тому, что уже совпадающие между собой кривые растяжения и сжатия приближаются к исходной кривой деформирования. Вследствие того, что ориентированные дефекты в большей степени неравновесны, чем дефекты дезориентированные, процесс, протекающий при большей температуре и меньшей скорости, должен приводить к меньшему значению эффекта Баушингера по сравнению с процессом, протекающим при меньшей температуре или большей скорости нагружения. Вообще исследования закономерностей процесса упругопластического деформирования материала в условиях неизотермического нагружения необходимо связывать со скоростью протекания процесса деформирования. Диапазон скоростей деформирования, определяемый современными инженерными задачами, простирается от 10 до 10 с . Верхняя граница этого интервала скоростей определяется технологическими задачами взрывной сварки, ковки, штамповки, а нижняя — относится к случаю ползучести и релаксации напряжений. Ясно, что в столь широком диапазоне изменения скоростей деформирования не может быть единой зависимости, связывающей сопротивление деформированию со скоростью. Анализ экспериментальных данных показывает, что следует различать по крайней мере две зоны влияния скорости деформирования — статическую и зону высоких скоростей, динамическую (между этими зонами может лежать зона относительно слабого влияния скорости деформирования на процесс деформирования материала). Причем влияние малых скоростей деформирования на указанный процесс (порядка 10 —10 с ) с физической точки зрения объясняется наличием реологических эффектов (ползучестью), а больших скоростей (порядка 10 —10 с ) — наличием динамических эффектов. Анализируя результаты экспериментальных работ по растяжению образцов при различных скоростях и температурах, можно сформулировать два общих свойства простейшего уравнения состояния материала [17] о = f (е , Т, Р), где Т (Т ти тах)> Р (Рт1п> Ртах) Ртах <7 10 С  [c.133]

Надежность работы в значительной мере зависит от соответствия примененных материалов и их качества требованиям нормативнотехнологической документации. Действующие нормы и правила предусматривают механические испытания и металлографический анализ основного металла и сварных соединений котлов, трубопроводов пара и горячей воды и сосудов, работающих под давлением. Объемы и методы механических испытаний и металлографических исследований строго регламентированы [23, 24, 25]. Механические испытания ставят своей задачей определение механических свойств при комнатной и рабочей температуре, без знания которых нельзя правильно выбрать материал для изготовления детали и оценить состояние металла в процессе эксплуатации. Основными видами механических испытаний являются испытания на растяжение, твердость и на ударный изгиб (динамические испытания). Технологические испытания на загиб, раздачу и свариваемость служат для оценки возможности проведения технологических операций, необходимых для изготовления и монтажа оборудования (сварки, гибки, вальцовки и т. п.). Такие важнейшие для котельных материалов испытания, как испытания на ползучесть, длительную прочность, сопротивление усталости, релаксацию напряжений, не предусматриваются действующими правилами котлонадзора в качестве контрольных и служат в основном для выбора допускаемых напряжений и установления ресурса работы элементов, изготовленных из различных сталей.  [c.8]

В главах 1-7 изложены основы сопротивления материалов расчет прямых стержней при простейших видах напряженно-деформированного состояния и стержневых систем, в том числе, ферм и пружин. Главы 9-14 сборника охватывают основы теории напряженного и деформированного состояний, прочность стержневых систем при сложном напряженном состоянии, безмомент-ные оболочки вращения, продольно-поперечный изгиб и устойчивость стержней, модели динамического нагружения стержневых систем, учет эффектов пластичности и элементы методов расчета на усталость. Кроме того, добавлен материал, касающийся стержней большой кривизны, а также задачи повышенной сложности. Общие теоретические положения вынесены в первый параграф приложения. Основные гипотезы сопротивления материалов сформулированы в виде аксиом, что призвано подчеркнуть феноменологический подход к построению фундамента этой науки как раздела механики деформируемого твердого тела.  [c.6]


Существенпо также то обстоятельство, что неучет более сложного поведения и свойств пластического материала при динамическом нагружении идет в запас при обычной постановке задач сопротивление конструкции из реального материала (предел текучести, например) при динамическом нагружении, как правило, больше, чем при статическом нагружении в силу этого неизменность используемой модели жесткопластического тела  [c.21]


Смотреть страницы где упоминается термин Задачи динамические в сопротивлении материало : [c.289]    [c.32]   
Технический справочник железнодорожника Том 2 (1951) -- [ c.111 ]



ПОИСК



Динамические задачи сопротивлении материалов

Динамическое сопротивление материалов

Задачи динамические

Сопротивление динамическое

Сопротивление материало

Сопротивление материалов

Сопротивление материалов, задачи



© 2025 Mash-xxl.info Реклама на сайте