Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебательная структура электронных симметричных молекул

На рис. 6.14 приведены схемы энергетических уровней основных электронных состояний молекул СО2 и N2. Поскольку N2 — двухатомная молекула, она имеет лишь одну колебательную моду на рисунке показаны два нижних уровня (и = 0, v= )-Структура энергетических уровней молекулы СО2 более сложная, поскольку эта молекула является трехатомной. Здесь мы имеем три невырожденные колебательные моды (рис. 6.15), а именно 1) симметричную валентную моду, 2) деформационную моду и 3) асимметричную валентную моду. Поэтому колебания молекулы описываются тремя квантовыми числами П], П2 и пз, которые определяют число квантов в каждой колебательной моде. Таким образом, соответствующий уровень обозначается этими тремя квантовыми числами, записываемыми  [c.361]


Закись азота, N20. Число электронов молекулы N 0 и молекулы СОа одинаково, II поэтому можно было бы также ожидать, что она имеет линейную симметричную структуру. Однако исследование колебательного и колебательно-вращательного спектров однозначно показывает, что молекула К О, хотя и линейна, но не симметрична. Форма молекулы N — N — О. Три наиболее интенсивные инфракрасные полосы имеют частоты  [c.301]

Наиболее длинноволновая область поглощения СН3 расположена вблизи 2160 А. Для этой области поглощения характерны два диффузных максимума. Соответствующая полоса в спектре поглощения СВз, расположенная при 2140 А, имеет гораздо более четкий контур с частично разрешенной тонкой структурой (фиг. 96). К этой полосе примыкают три очень слабые полосы как со стороны длинных, так и со стороны коротких длин волн. Наличие в системе единственной интенсивной полосы указывает на то, что конфигурация молекулы в верхнем и нижнем электронных состояниях должна быть практически одной и той же. Тонкая структура полосы может быть полностью объяснена, если полоса является параллельной полосой симметричного волчка (фиг. 97). Чередование интенсивности линий в полосе и, в частности, очень низкая интенсивность линии Л (0) свидетельствуют о том, что по крайней мере в одном из двух участвующих в электронном переходе состояний молекула имеет плоскую конфигурацию, так как чередование интенсивности линий в подполосе ЛГ = О (фиг. 97) может наблюдаться только в случае симметрии 1>з . Таким образом, анализ распределения интенсивности в колебательной и вращательной структуре рассматриваемой системы приводит к выводу, что молекула должна иметь плоскую структуру в обоих электронных состояниях, участвующих в переходе. Следует, правда, отметить, что нельзя исключить возможность того, что структура молекулы СН3 слегка отклоняется от плоской конфигурации, но лишь в пределах, оставляющих возможность для появления инверсионного удвоения, столь большого по величине, что в спектре поглощения наблюдается лишь одна инверсионная компонента.  [c.523]

Вращательные уровни энергии — это уровни, связанные с вращательным движением молекулы как целого. Вращение молекул приближенно рассматривают как свободное вращение твердого тела с тремя моментами инерции вокруг трех взаимно перпендикулярных осей. При этом возможны три случая 1) сферический волчок (все три момента инерции одинаковы) 2) симметричный волчок (два момента инерции одинаковы, третий отличен от них) 3) асимметричный волчок (все три момента инерции различны). Разности энергий соседних вращательных уровней составляют от сотых долей электрон-вольта для самых легких молекул до стотысячных долей электрон-вольта для наиболее тяжелых молекул. Вращательные переходы непосредственно изучаются методами инфракрасной спектроскопии и комбинационного рассеяния света, а также методами радиоспектроскопии. Колебательно-вращательные спектры получаются в ре-дультате того, что изменение колебательной энергии сопровождается одновременными изменениями вращательной энергии. Такие изменения происходят и при электронно-колебательных переходах, что и обусловливает вращательную структуру электронно-колебательных спектров.  [c.228]


Структура системы полос у молекулы, обладающей одним или несколькими элементами симметрии, подобна структуре системы у несимметричной молекулы. Различие заключается в том, что в случае симметричных молекул имеются специфические правила отбора, которые строго запрещают появление в спектре некоторых полос и устанавливают ограничения для возможных направлений момента перехода в разрешенных полосах, что приводит к упрощению их вращательной структуры. Кроме того, для молекуле вырожденными колебаниями должны быть соответствующим образом изменены формулы для колебательной энергии. Наконец, как уже упоминалось, для симметричных молекул некоторые электронные переходы запрещены, однако они могут происходить с небольшой интенсивностью за счет электронноколебательных взаимодействий. Колебательная структура таких запрещенных переходов отличается от структуры разрешенных переходов и будет рассмотрена отдельно.  [c.150]

Тонкая структура невырожденных электронно-колебательных состояний. Во вращательных уровнях данного электронно-колебательного уровня, имеюпщх одно и то же /, но различные типы, по-разному проявляется влияние кориолисова взаимодействия с вращательными уровнями других электронно-колебательных уровней, влияние центробежного растяжения или других взаимодействий более высоких порядков. Поэтому в достаточно высоком приближении существует расщепление на столько уровней, сколько показано числом горизонтальных линий на фиг. 38. Иными словами, когда молекула деформирована центробежными силами или неполносимметричными колебаниями, она перестает быть строго симметричным волчком и исчезает причина для (21 - - 1)-кратного вырождения. Вырождение снимается в той мере, в какой нарушена симметрия. Получающиеся расщепления подробно рассмотрены Яном [617], а затем Хехтом [485]. К сожалению, эти расщепления нельзя описать простыми формулами. Они зависят от матричных элементов различных возмущающих членов.  [c.103]

Перпендикулярные полосы. Для перпендикулярных полос молекул типа слегка асимметричного волчка существует правило отбора АК = +1. Помимо этого, должны соблюдаться правила отбора для симметрии (11,97) — (11,99) и электронно-колебательно-вращательные правила отбора, приведенные в табл. 15. На фиг. 106 подробно объясняется структура перпендикулярной полосы аналогично тому, как это б].1Ло сделано на фиг. 99 в случае симметричного волчка. Для простоты было принято, что А =А", В -= В" и С = С". Для построения схемы полосы были использованы уровни совершенно жесткого асимметричного волчка, для которого х = —0,95. Относительные интенсивности были взяты из таблиц Кросса, Хайнера и Кинга [257] для температуры 300° К. Сравнив фиг. 106 с фиг. 99, можно увидеть, что внешний вид грубой структуры (A -структуры) совершенно такой же, как и в случае настоящего симметричного волчка. Если, как мы это и сделали, считать одинаковыми вращательные постоянные в верхнем и нижнем состояниях, то в спектре должен наблюдаться ряд эквидистантных подполос. Если же вращательные постоянные различаются, то подполосы должны расходиться. При небольшом разрешении наиболее характерной особенностью полосы являются ( -ветви этих подполос, правда, теперь уже не похожие но внешнему виду на отдельные линии, как это было в случае симметричного волчка. Как и прежде, подполосы образуют две ветви, одну ветвь типа г и одну ветвь типа р, в соответствии со значением АК = И- 1 и —1, причем одна из них примыкает к другой без какого-либо разрыва.  [c.251]

Как и в случае молекул типа симметричного волчка, структура полос молекул типа асимметричного волчка ири запрещенных электронных переходах, которые становятся возможными в результате электропно-колебатель-ного взаимодействия, совершенно такая же, как и при разреигепных переходах направление момента перехода и, следовательно, структура полос определяются электронно-колебательной симметрие верхнего и нижнего состояний.  [c.265]

Несмотря на то что молекула HN N очень близка к симметричному волчку, Л -удвоение, характерное для симметричного волчка, ясно проявляется для уровней А" = 1 и К" = 1 как удвоение во всех ветвях подполос 2 —1 и 1—2 и как колебательный дефект между Р-, R- и Q-ветвями в подполосах 0—1 и 1—0. Знак инерционного дефекта показывает, что эта полоса является полосой типа С, т. е. что момент перехода перпендикулярен плоскости молекулы. Положительный знак и небольшая величина инерционного дефекта свидетельствуют также о плоской структуре молекулы в обоих электронных состояниях. Геометрические параметры молекулы HN N в обоих состояниях приведены в табл. 67. Присутствие только одной полосы в системе, обуслов.пенной рассматриваемым электронным переходом, находится в согласии с принципом Франка — Кондона, поскольку структура молекулы изменяется при переходе очень мало.  [c.532]



Смотреть страницы где упоминается термин Колебательная структура электронных симметричных молекул : [c.748]    [c.193]    [c.300]    [c.317]    [c.557]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.150 , c.180 ]



ПОИСК



274, 323—327 симметричный

Колебательная структура электронных

Колебательные

Симметричные молекулы, колебательная

Симметричные молекулы, колебательная структура

Структура симметричная

Электронная структура



© 2025 Mash-xxl.info Реклама на сайте