Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кристаллооптика

Под направлением распространения мы понимаем направление, вдоль которого распространяется фронт волны, т. е. направление, перпендикулярное к поверхности постоянной фазы. Направление это обычно совпадает с направлением распространения энергии (лучом или вектором Умова — Пойнтинга). Поэтому часто не делают различия между этими двумя направлениями. Однако в ряде случаев (например, в кристаллооптике, при полном внутреннем отражении) эти два направления не совпадают. Так как векторы напряженности и // всегда перпендикулярны к вектору Умова — Пойнтинга, то в упомянутых случаях по крайней мере один из этих векторов напряженности не перпендикулярен к направлению распространения, так что электромагнитная волна в данном случае не является строго поперечной. Исследование показывает, что заключение это относится к вектору ,  [c.41]


Несовпадение направлений Е и О имеет для кристаллооптики чрезвычайно важное значение, выясняемое дальше.  [c.499]

Изложенное в предыдущих параграфах показывает, что рещение задач кристаллооптики можно свести к построению некоторых вспомогательных поверхностей. Мы рассмотрели две из них эллипсоид Френеля (для лучей) и эллипсоид индексов (для нормалей). Разумеется, все вспомогательные поверхности связаны между собой, так что знание одной из них позволяет более или менее сложным путем найти и остальные. Тем не менее применение различных поверхностей может оказаться полезным при разборе отдельных конкретных задач, решения которых особенно просто удается найти путем обсуждения свойств подходящей вспомогательной поверхности.  [c.506]

Ортогональность световых лучен волновому фронту не имеет места в кристаллооптике. Подобно этому, и механические траектории  [c.305]

Я перенес главу, посвященную основным фотометрическим понятиям, во введение, желая использовать правильную терминологию уже при описании явлений интерференции и оставив в отделе лучевой оптики лишь вопросы, связанные с ролью оптических инструментов при преобразовании светового потока. Заново написаны многие страницы, посвященные интерференции, в изложении которой и во втором переработанном издании осталось много неудовлетворительного. Я постарался сгруппировать вопросы кристаллооптики в отделе VIII, хотя и не счел возможным полностью отказаться от изложения некоторых вопросов поляризации при двойном лучепреломлении в отделе VI, ибо основные фактические сведения по поляризации мне были необходимы при изложении вопросов прохождения света через границу двух сред, с которых мне казалось естественным начать ту часть курса, где проблема взаимодействия света и вещества начинает выдвигаться на первый план. Я переработал изложение астрономических методов определения скорости света и добавил некоторые новые сведения о последних лабораторных определениях этой величины. Гораздо больше внимания уделено аберрации света. Рассмотрены рефлекторы и менисковые системы Д. Д. Максутова. Значительным изменениям подверглось изложение вопроса о разрешающей способности микроскопа я постарался отчетливее представить проблему о самосветя-щихся и освещенных объектах. Точно так же значительно подробнее разъяснен вопрос о фазовой микроскопии, приобретший значительную актуальность за последние годы.  [c.11]

Обычно в учебниках встречается утверждение, что законы преломления не приложимы к необыкновенному лучу в одноосном кристалле и к обоим лучам в двуосном. Это — правильное утверждение, но оно имеет чисто отрицательный характер, показывая, что простое построение, предписываемое законом преломления, не при-ложимо к решению задачи о направлении распространения светового луча. Если взамен не дается никаких правил, то решение даже весьма простых вопросов кристаллооптики оказывается затруднительным. Между тем существует гораздо более общий прием отыскания направления распространения преломленной световой волны, а именно, построение, основанное на принципе Гюйгенса, следствием которого для изотропной среды является закон преломления Декарта — Снеллия. Напомним, что сам Гюйгенс рассматривал при по.мо-щн этого приема вопрос о распространении света в двоякопрелом-ляющих телах (исландский шпат) и получил крайне важные результаты. Применение построения Гюйгенса является простым и действенным средством для разбора вопроса о распространении света в анизотропных средах. Поверхность, фигурирующая в построении Гюйгенса, есть, очевидно, лучевая поверхность, а не поверхность нормалей. Действительно, по правилу Гюйгенса для получения фронта (плоской) волны проводят плоскость, касательную к поверхности Гюйгенса. А фронт волны тсателен именно к лучевой поверхности (рис. 26.11, а) и пересекает поверхность нормалей (рис. 26.11, б).  [c.509]


Таким образом, в случае плоских монохроматических волн связь между О г, () и Е (г, t) осуществляется тензором второго ранга, как и в классической кристаллооптике (ср. (149.1)). Однако нелокаль-ность, поясненная выше, приводит к зависимости тензора диэлектрической проницаемости 8у (со, к) не только от частоты света, но и от волнового вектора к, т. е. от длины волны к = 2лА), и от направления распространения света. Зависимость Е у (со, к) от к называют пространственной дисперсией среды ). Этим же термином обозначают и факт нелокальности связи между индукцией и напряженностью поля, поскольку нелокальность представляет собой лишь иное словесное описание зависимости г j (со, к) от к.  [c.523]

Распространение света в анизотропных средах имеет ряд особенностей. Известно, что анизотропная среда характеризуется различными свойствами по разным направлениям. Возможна анизотропия любых свойств — механических, электрических, упругих, оптических и т. п. Анизотропия свойств всегда тесно связана с анизотропией строения вещества и часто встречается в разнообразных объектах как природного, так II искусственного происхождения. Мы рассмотрим оптическую анизотропию, т. е. различие оптичес кнх свойств по разным направлениям,. которое наиболее ярко проявляется в кристаллических средах. Распространение света в кристаллах изучает кристаллооптика. Теория и экспериментальные методы кристаллооптики применимы и к анизотропным веществам, не обладающим кристаллической структурой.  [c.30]

С анизотропией (и гиротропией) связаны разнообразные явления. Однородная А, с. оказывает существенное влияние на свойства распространяющихся в ней нормальных волн, определяя, в частности, их поляризацию и различие направлений распространения boj -нового (фазового) фронта и энергии волн (см, также Кристаллооптика И Двойное лучепреломление). В неоднородной А. с. может происходить линейное вз-действие поляризов, волн (см. Линейное взаимодействие волн), приводящее к перераспределению энергии между нормальными волнами, но не нарушающее суперпозиции принцип. Последний нарушается в случае нелинейного взаимодействия волн, к-рое в А. с. также обладает своеобразными анизотропными свойствами (см. Нелинейная оптика и Нелинейная акустика). См. также Анизотропия, Магнитная анизотропия, Оптическая анизотропия.  [c.84]

ДВУОСНЫЕ кристаллы— кристаллы, в к-рых происходит двошюе лучепреломление при всех направлениях падающего на них луча света, кроме двух на-правлс1[ий (каждое из них паз. оптич. осью кристалла). Подробнее см. Кристаллооптика. ДВУХЖЙДКОСТНАЯ ГИДРОДИНАМИКА ПЛАЗМЫ— матем. модель, в к рой полностью ионизованная плазма представляется в виде смеси двух газов ааряж. частиц — электронов (е) и ионов (t), связанных друг  [c.569]


Смотреть страницы где упоминается термин Кристаллооптика : [c.2]    [c.131]    [c.10]    [c.495]    [c.497]    [c.499]    [c.501]    [c.503]    [c.505]    [c.507]    [c.507]    [c.509]    [c.511]    [c.513]    [c.515]    [c.517]    [c.519]    [c.521]    [c.523]    [c.30]    [c.31]    [c.33]    [c.35]    [c.37]    [c.39]    [c.41]    [c.43]    [c.45]    [c.47]    [c.245]    [c.649]    [c.650]    [c.674]    [c.694]    [c.700]    [c.34]    [c.141]    [c.642]    [c.127]   
Смотреть главы в:

Основы оптики Изд.2  -> Кристаллооптика

Линейные и нелинейные волны  -> Кристаллооптика


Техническая энциклопедия Том15 (1931) -- [ c.0 ]

Техническая энциклопедия Том 11 (1931) -- [ c.0 ]

Линейные и нелинейные волны (0) -- [ c.0 , c.408 , c.414 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте