Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы алюминиевые Удельный цинковые — Удельный* вес

Можно ремонтировать детали и пайкой из алюминиевых и цинковых сплавов. Здесь процесс гораздо сложнее. Алюминий легко окисляется. Удаление окисла, имеющего удельный вес выше, чем у сплава, представляет значительные трудности. Хорошее качество пайки алюминиевых сплавов получается твердым припоем марки 34А из 25—30% меди, 4—7% кремния и 63—70% алюминия с применением флюса из 25—35% хлористого лития, 8—12% фтористого- калия, 8—15% хлористого цинка и 27—40% хлористого калия. Алюминиевые детали можно паять мягким припоем на цинковой основе и с травленой соляной кислотой, как флюсом. Пайка применяется гораздо реже, чем сварка и наплавка.  [c.21]


Алюминиево-медно-цинковый сплав ЦАМ 10-5 является хорошим материалом для накладок. Состав сплава и его свойства определяются ГОСТ 7117—62. Сплав при работе с чугунными направляющими эффективно предохраняет их от появления задиров. В паре с чугунными направляющими накладки из ЦАМ 10-5 при малых скоростях и при удельном давлении до 2 кгс/см перемещаются в сравнении с парой чугун — чугун более плавно, с меньшей склонностью к скачкам. В условиях абразивного износа этот сплав работает плохо. Поэтому при использовании накладок из этого материала необходимо уделять особое внимание защитным устройствам, предохраняющим направляющие от попадания грязи, мелкой стружки, абразивной пыли и т. д. Накладки из ЦАМ 10-5 целесообразно использовать при ремонте направляющих расточных, продольно-строгальных, карусельных, фрезерных, зуборезных и других станков. Сплав ЦАМ 10-5 выпускается промышленностью в виде катаного листа толщиной 6—20 мм, шириной 500—700 мм и длиной 600—1000 мм. Твердость материала НВ 95—110.  [c.213]

Недостатки цинковых сплавов большой удельный вес (по сравнению с алюминиевыми сплавами), слабая сопротивляемость коррозии, падение ударной вязкости при температуре ниже нуля.  [c.225]

К труднорастворимым соединениям, образующимся на магниевых протекторах при обычной токовой нагрузке, относятся гидроксид, карбонат и фосфат магния. Впрочем, растворимость гидроксида и карбоната еще сравнительно высока. Очень низкую растворимость имеет только фосфат магния. Движущее напряжение у магниевых протекторов при защите стали при не слишком малой электропроводности и> >500 мкСм-см составляет около 0,65 В, т. е. в три раза выше, чем у цинка и алюминия. Магниевые протекторные сплавы применяются преимущественно там, где движущее напряжение цинковых и алюминиевых протекторов недостаточно или где опасность пассивации слишком велика. Магниевые протекторы используют при повышенном электросопротивлении среды и для получения большей плотности защитного тока. Объектами такой защиты могут быть стальные конструкции в пресной воде, балластные танки для пресной воды, водоподогреватели и резервуары для питьевой воды. В случае резервуаров для питьевой воды важное значение имеет физиологическая безвредность продуктов коррозии (см. раздел 21.4). Здесь нельзя, например, применять алюминиевые протекторы, активированные ртутью. В грунте магниевыми протекторами можно защищать небольшие сооружения при удельном сопротивлении грунта до 250 Ом-м и более крупные резервуары и трубопроводы при сопротивлении грунта до 100 Ом-м. На объектах, имеющих органические покрытия для защиты от коррозии, в средах со сравнительно хорошей проводимостью иногда может оказаться необходимым промежуточное включение омического сопротивления для ограничения тока, чтобы не допустить повреждения покрытия слишком большим защитным током, или чтобы предотвратить установление слишком низких потенциалов (см. раздел 6).  [c.188]


Судостроение, а позднее и сооружение портов являются одними из старейших областей применения катодной защиты от коррозии (см. раздел 1.3). Для судов и сооружений, располагаемых в прибрежном шельфе, пока применяют преимущественно протекторную защиту, тогда как для портовых сооружений и мостовых перегружателей ввиду потребности в большом защитном токе предпочитают применять станции катодной защиты. Характерные проблемы коррозии для сооружений в прибрежном шельфе встретились уже в середине 1950-х гг. в Мексиканском заливе. Однако скорость коррозии здесь была меньшей по сравнению с наблюдаемой в Северном море (см. табл. 17.2). В допол-нение к этому на передний план все более выступают проблемы усталостного коррозионного растрескивания [13]. В отличие от свайных причалов н судов, на сооружениях в прибрежном шельфе в большинстве случаев не применяют никаких защитных покрытий или используют только временные покрытия. Защита от коррозии обеспечивается по катодной схеме. Значение токоотдачи (в ампер-часах) протекторов из алюминиевых, магниевых и цинковых сплавов согласно данным табл. 7.2—7.4 относятся как 3,1 1,4 1. Напротив, цена этих протекторов (в марках за 1 кг) относится как 1,3 2,8 1, так что удельные затраты в марках ФРГ на 1 А-ч находятся между собой в соотношении 1 2,4 4,7 и наиболее выгодными оказываются алюминиевые протекторы. Многолетние наблюдения за протекторами трех типов в Мексиканском заливе показали, что затраты на них относятся между собой как 1 3,5 2 [13]. Таким образом, магниевые протекторы для использования в прибрежном шельфе неэкономичны. Защита цинковыми протекторами обходится дороже защиты алюминиевыми протекторами.  [c.421]

Сочетание высокой коррозионной стойкости и удельной прочности в жидких щелочных металлах и их парах делает молибден и его сплавы одним из лучших материалов в автономных энергетических установках для космических аппаратов. В последние годы в этом направлении достигнуты значительные успехи. Например, по данным работ [169а, 186а], турбинные лопатки (см. рис. 1.2) из молибденовых сплавов TZM успешно выдержали длительные испытания в опытных установках, где качестве рабочей среды использовали пары цезия и калия. После испытания в опытной турбине в течение 3000 ч при температуре 750°С и скорости потока 160 м/с потеря массы лопаток составляла всего лишь 0,029%, а максимальная глубина коррозии менее 0,025 мм. Благодаря высокому модулю упругости и высокому пределу текучести, молибденовые сплавы типа TZM являются хорошим материалом для пружин, работающих в жидких металлах при температуре 800—1000° С. Такие пружины, покрытые никелем или дисилицидом молибдена, могут быть использованы также в окислительной среде при высоких температурах. Высокий модуль упругости, отсутствие взаимодействия с жидкими металлами и хорошая теплопроводность сделали молибден и его сплавы одним из лучших материалов для изготовления прессформ и стержней машин для литья под давлением алюминиевых, цинковых и медных сплавов.  [c.146]

Наибольшее количество литых деталей изготовляется из стали и чугуна. Для изготовления деталей, к которым предъявляются высокие физико-механические требования, применяются легированные стали и специальные чугуны. При отработке литых деталей на технологичность следует избегать применения дорогостоящих легированных сталей и чугунов, а также меди и медных сплавов, заменяя их более дешевыми и недефицитными. Детали из цветных сплавов обладают высокой антифрикционной и коррозионной устойчивостью, но во многих случаях эти сплавы можно заменить более дешевыми материалами, не снижая качества и надежности детали. Детали из алю.миниевых сплавов имеют широкое распространение в авиационной, приборостроительной, автотракторной и других отраслях промышленности. Алюминиевый сплав имеет низкий удельный вес в сравнении с удельным весом черных металлов, высокую жидкотекучесть, незначительные усадки, что способствует получению легких деталей сложной конфигурации. Такое же распространение имеют и магниевые сплавы, так как у них малый удельный вес и высокая устойчивость против коррозий. Применение цинковых сплавов для литья под давлением деталей арматуры автомобилей и тракторов, а 116  [c.116]


Многие детали, а также различные декоративные изделия отливают из цинковых сплавов под давлением. По сравнению с алюминиевыми цинковые сплавы имеют большую пластичность, вызывают меньший износ прессформы благодаря более низкой температуре плавления и свойствам не вступать в реакцию с материалом формы. Но вместе с тем они имеют больший удельный вес, низкую сопротивляемость коррозии и уменьшенную ударную вязкость при температуре ниже нуля.  [c.180]


Смотреть страницы где упоминается термин Сплавы алюминиевые Удельный цинковые — Удельный* вес : [c.621]    [c.250]   
Справочник технолога машиностроителя Том 1 (1963) -- [ c.79 ]



ПОИСК



Куб цинковый

Сплавы Удельный вес

Сплавы алюминиевые — Удельный вес

Цинковые сплавы —



© 2025 Mash-xxl.info Реклама на сайте