Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Трение вязкое в потоке каналах

Кроме механических и гидравлических силовых (внешних) потоков УТ имеет диссипативный поток внутренних потерь. Этот поток характеризует механические и гидравлические потери, происходящие внутри машины вследствие механического трения ее деталей, а также потери напора жидкости благодаря наличию в последней вязкого трения трения жидкости о стенки каналов, внутреннего трения, различных местных потерь на сжатие потока, расширение, завихрение, внутренней циркуляции. При работе машины имеют место также периодическое сжатие жидкости и ее последующее расширение, а также периодическое расширение и сжатие каналов. Эти явления вызывают потерю энергии на гистерезис.  [c.31]


Фильтрация характеризуется интенсивным рассеиванием энергии жидкости в потоке под влиянием вязкого трения. Учитывая незначительность размеров поровых каналов и скоростей фильтрации в реальном грунте, можно предполагать, что жидкость в них движется по закону ламинарного режима. Тогда потери напора вдоль потока должны быть пропорциональны скорости движения. Закон пропорциональности скорости фильтрации потерям напора впервые был установлен экспериментально при исследовании течения воды в песчаных фильтрах французским инженером А. Дарси (1856 г.) и носит название закона Дарси. Поскольку потери напора при фильтрации зависят от скорости линейно, то этот закон часто называют также линейным законом фильтрации.  [c.445]

При движении воздуха, т. е. вязкой жидкости, возникают силы внутреннего трения или силы вязкости. Они проявляются, например, в падении давления в трубах в направлении течения. Эти касательные силы существуют не только между жидкостью и телом в потоке, стенкой трубы или канала, но и между отдельными слоями жидкости с разной скоростью. Слой жидкости, непосредственно прилегающий к телу, трубе, каналу, не движется, он тормозит смежный с ним слой, который действует таким же образом на следующий, и т. д. Скорость вблизи тела возрастает от нулевой у его поверхности до скорости невозмущенного потока вдали (рис. 3.2). Толщина этого слоя, называемого пограничным, мала она тем меньше, чем больше скорость потока. Пограничный слой оказывает огромное влияние на поведение тела в потоке.  [c.35]

Действительный процесс расширения газа в сопловом аппарате сопровождается гидравлическими потерями, которые вызываются трением вязкого газа в пограничном слое каналов соплового аппарата, трением частиц газа между собой и вихреобразованиями в потоке. Эти потери увеличивают энтальпию газа на выходе из соплового аппарата.  [c.187]

Для рассмотрения перечисленных зависимостей необходимо уточнить характер движения жидкости в рабочем колесе насоса, т.к. принятые при выводе уравнения Эйлера допущения о неизменности течения в нем идеальной жидкости в виде одинаковых по форме элементарных струек с равными скоростями в подобных их сечениях оказываются существенно неверными. Во-первых, решетка лопастей, образующих проточную часть рабочего колеса, состоит из конечного их числа с межлопастными каналами, продольные и поперечные размеры которых представляются величинами одного порядка, а толщина лопастей, которая должна быть достаточной из соображений прочности и износостойкости, заметно стесняет сечение потока. Во-вторых, подача рабочего колеса насоса в процессе его эксплуатации может существенно изменяться, в связи с чем изменяются и условия течения жидкости в межлопастных каналах, характер передачи энергии и величина напора потока иа выходе из насоса. И, наконец, в-третьих, протекающая через рабочее колесо жидкость является вязкой и на весь рабочий процесс накладывается внутреннее трение с неизбежными потерями энергии.  [c.400]


Уравнения переноса массы и тепла при ламинарном и турбулентном течениях однофазных или двухфазных теплоносителей в каналах выводятся из основных законов физики сохранения массы, сохранения энергии, вязкого трения Ньютона, теплопроводности Фурье. Здесь и далее не будут затрагиваться вопросы переноса в жидкостях, законы трения в которых не подчиняются закону Ньютона (т = (Г ди ду). Уравнения неразрывности, движения и переноса тепла с учетом зависимости свойств от параметров теплоносителя образуют систему, представляющую основу для расчета полей скорости и температуры. Эта система является замкнутой для ламинарного режима течения. Для турбулентных режимов течения приходится прибегать к гипотезам или построению полуэмпирических моделей, позволяющих замкнуть систему уравнений. Для течений двухфазного потока, особенно в условиях кипения или конденсации, эмпирический подход до настоящего времени преобладает.  [c.9]

В уравнении энергии можно пренебречь членом, определяющим кинетическую энергию потока, а в уравнении движения механизм вязкого трения не рассматривать совсем. Последнее требует соответствующей замены правой части уравнения (1-2) эмпирической зависимостью, характеризующей сопротивление движению в каналах [Л. 135].  [c.12]

Поэтому ослабление продольных волн за счет трения в трубах или каналах с твердыми стенками должно быть следствием вязкого замедления и связанной с ним диссипации энергии в пограничном слое, который отделяет безвихревые потоки, изученные в разд. 2.1—2.6, от твердых границ. Эти явления легко поддаются оценке, если, как предполагается в этом разделе, коэффициент диффузии (117) достаточно мал, чтобы пограничный слой был тонким по сравнению с размерами поперечного сечения.  [c.163]

Течение газа в канале связано с рассеиванием части энергии потока на преодоление сил трения. При движении вязких жидкостей, каковыми являются рабочие тела поршневых машин, имеют место значительные потери в пограничном слое и ядре потока. Поэтому при одинаковых движущих силах средняя скорость истечения идеальной жидкости Сцо, движущейся без потерь, будет выше средней скорости истечения вязкой жидкости  [c.26]

Новая модель - гиперболическое приближение уравнений Навье-Стокса - дает более точное описание смешанных вязких течений в каналах, соплах, в ударном слое около обтекаемых сверзвуковым потоком затупленных тел при больших и умеренных числах Рейнольдса, чем известные неэллиптические модели. Это продемонстрировано на решении тестовых задач газовой динамики. Гиперболическое приближение позволяет проводить расчеты длинных сопел со значительной продольной кривизной горла и расчеты сверхзвукового обтекания тонких затупленных тел с длинами до сотен калибров. Новая модель хорошо воспроизводит поле давления при течениях в соплах с К,,, = 1.0 и удовлетворительно - тепловой поток и трение на стенке. Для внешних течений эта модель достаточно точно предсказывает аэродинамические характеристики - такие, как давление, сопротивление, тепловой поток и др.  [c.45]


Смотреть страницы где упоминается термин Трение вязкое в потоке каналах : [c.277]    [c.12]    [c.85]    [c.143]    [c.59]    [c.191]   
Теория элементов пневмоники (1969) -- [ c.402 ]



ПОИСК



Поток в канале

Трение в потоке

Трение вязкое

Трение вязкое в потоке



© 2025 Mash-xxl.info Реклама на сайте