Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление межэлектродной сред

В настоящее время нет удовлетворительного аналитического выражения для расчета удельной электропроводности межэлектродной среды. Причиной этому служит недостаточная изученность процесса размерной ЭХО, а также сложность и многообразие взаимных связей электрохимических и других процессов, влияющих на сопротивление межэлектродной среды.  [c.119]

Аналогичная зависимость для удельного сопротивления межэлектродной среды  [c.120]


Выражение (23) по своей структуре дает более четкую физическую интерпретацию сопротивления межэлектродной среды, подчеркивая ее неоднородность. Однако использование выражения (23) предполагает включение в состав системы уравнений, описывающих поведение электрохимической ячейки, уравнений гидравлического тракта для установления математической функциональной связи между величиной МЭЗ и средней скоростью протекания электролита. Достаточно точное аналитическое описание зависимости (23) с учетом различных гидродинамических режимов течения электролита в межэлектродном промежутке при сложной форме катода-инструмента представляет собой крайне трудную задачу. Поэтому для практических расчетов и исследования электрохимической ячейки более целесообразным является использование эмпирической зависимости удельной электропроводности межэлектродной среды по методу, предложенному в работе [186].  [c.120]

Вторым путем повышения производительности является интенсификация процесса анодного растворения путем увеличения плотности технологического тока и выхода по току. Это достигается уменьшением сопротивления межэлектродной среды (уменьшением межэлектродных зазоров, повышением температуры электролита и его концентрации, использованием электролитов с более высокой удельной электропроводностью), подбором режимов электрохимической обработки (рода тока, типа электролита, гидродинамического режима, параметров технологического напряжения, pH электролита и др.), созданием условий, при которых введением в процесс дополнительных факторов снижается концентрационная поляризация и пассивация анода, подавляется и тормозится образование пассивных пленок или ускоряется их  [c.203]

При прошивке сквозных отверстий повышение давления в зоне-выхода электролита из электрохимической ячейки целесообразно достигать путем создания ступенчатого закона распределения давления, например с помощью кольцевой проточки на торце инструмента (рис. 167). При оптимальном соотношении глубины и ширины кольцевой проточки гидравлическое сопротивление в ней имеет незначительную величину. Давление электролита в основном падает на выходной и входной кромках инструмента поэтому в зоне выхода электролита из электрохимической ячейки создается повышенное давление, которое обеспечивает уменьшение-объема газа и увеличение удельной электропроводности межэлектродной среды. Использование кольцевой проточки позволяет выравнивать торцовые зазоры на входе и выходе электролита из ячейки.  [c.269]


Схема процесса электроэрозионной размерной обработки при прямой полярности, когда деталь является анодом, а инструмент— катодом, показана на рис. 34. Эту разновидность эрозионной обработки принято называть электроискровой. Конденсатор С заряжается через сопротивление Я от источника постоянного тока. При достижении на конденсаторе напряжения, равного напряжению пробоя межэлектродного зазора, в диэлектрической среде 3, через зазор между электродом-инструментом 2 и электродом-деталью I происходит импульсный разряд конденсатора после этого конденсатор вновь заряжается и процесс повторяется. Величина емкости конденсатора определяет режим обработки. Такую схему применяют в основном для обработки твердосплавных деталей штампов и пресс-форм. В результате действия кратковременных импульсов электрического тока происходит разрушение твердого сплава — его размерная обработка.  [c.68]

Обш,ие сведения. Электроискровой способ обработки деталей основан на явлении электрической эрозии (разрушение материала электродов) при искровом разряде. Во время проскакивания искры между электродами поток электронов, движущийся с огромной скоростью, мгновенно нагревает часть поверхности анода до высокой температуры (10 ООО... 15 000° С) металл плавится и даже переходит в газообразное состояние, в результате чего происходит взрыв. Частицы оторвавшегося расплавленного металла анода выбрасываются в межэлектродное пространство и в зависимости от его среды (газовая или жидкая) достигают катода и оседают на нем или рассеиваются. Это свойство искрового разряда и используют в практике. При наращивании металла деталь подключают к катоду, а при снятии (обработке) — к аноду. Инструменту (одному из электродов) придают колебательное движение от вибратора для замыкания и размыкания цепи и получения искрового разряда. Необходимый режим устанавливают применением переменного сопротивления и постоянной или переменной емкости конденсаторов, но имеются установки и без конденсаторов.  [c.107]

Измерения показали, что электросопротивление монокристалла не ниже, чем в межэлектродном пространстве наименее проводящей из испытанных сред (азоте). На основании этого следует полагать, что истинное сопротивление монокристалла R по порядку величины может быть больше или равно измеренному значению сопротивления. С такими же трудностями столкнулись авторы [3] при измерении электропроводности монокристалла корунда в воздухе при низких температурах.  [c.375]

Способы аналитического описания процессов, происходящих в ячейке, являются частными моделями, отображающими лишь отдельные свойства этих процессов, и из-за недостаточной точности и большой сложности математического описания малоприемлемы для практического применения при формировании систем регулирования МЭЗ [66, 192, 230]. Для проведения инженерных расчетов представляют интерес методы описания удельной электропроводности (или удельного сопротивления) межэлектродной среды, базирующиеся на проведении предварительных экспериментальных исследований электрохимической ячейки [13, 50]. Предложенная эмпирическая зависимость для удельной электропроводности межэлектродной среды основана на аппроксимации экспериментально полученной зависимости х = / (з) при постоянном напряжении на электродах  [c.120]

Кинематика движения катода может быть охарактеризована изменением величины и направления вектора скорости катода. Технологическое напряжение может быть постоянным, униполярным импульсным, асимметричным. Тип электролита может быть охарактеризован видом зависимости выхода по току от плотности тока или от величины межэлектродного зазора. Так как вид этой зависимости при выбранном электролите во многом определяется типом обрабатываемого материала, то косвенно учитывается и влияние материала анода на процесс обработки. Скорость электролита является одним из важнейших параметров, влияющих на скорость анодного растворения. Она в значительной мере характеризует гидродинамический режим. Температура, газонаполнение, pH, зашламленность и зависящая от них величина удельного сопротивления межэлектродной среды являются основными параметрами среды.  [c.194]



Смотреть страницы где упоминается термин Сопротивление межэлектродной сред : [c.298]    [c.135]    [c.85]    [c.34]    [c.69]   
Размерная электрохимическая обработка деталей машин (1976) -- [ c.120 ]



ПОИСК



Сопротивление (среды)



© 2025 Mash-xxl.info Реклама на сайте