Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электропроводность межэлектродной удельная

Уравнения (18)—(21), описывающие поведение электрохимической ячейки, являются нелинейными. В этих уравнениях кроме нелинейности типа произведения двух переменных (18) коэффициент выхода по току г и удельная электропроводность межэлектродной среды и в общем случае также являются нелинейными функциями различных технологических параметров, и в первую очередь плотности тока.  [c.119]

В настоящее время нет удовлетворительного аналитического выражения для расчета удельной электропроводности межэлектродной среды. Причиной этому служит недостаточная изученность процесса размерной ЭХО, а также сложность и многообразие взаимных связей электрохимических и других процессов, влияющих на сопротивление межэлектродной среды.  [c.119]


Выражение (23) по своей структуре дает более четкую физическую интерпретацию сопротивления межэлектродной среды, подчеркивая ее неоднородность. Однако использование выражения (23) предполагает включение в состав системы уравнений, описывающих поведение электрохимической ячейки, уравнений гидравлического тракта для установления математической функциональной связи между величиной МЭЗ и средней скоростью протекания электролита. Достаточно точное аналитическое описание зависимости (23) с учетом различных гидродинамических режимов течения электролита в межэлектродном промежутке при сложной форме катода-инструмента представляет собой крайне трудную задачу. Поэтому для практических расчетов и исследования электрохимической ячейки более целесообразным является использование эмпирической зависимости удельной электропроводности межэлектродной среды по методу, предложенному в работе [186].  [c.120]

Уменьшение влияния изменения электропроводности межэлектродного промежутка может быть достигнуто введением коррекции управляющего сигнала [13]. Трудность измерения удельной электропроводности непосредственно в рабочем межэлектродном зазоре приводит к необходимости установки дополнительной (измерительной) электрохимической ячейки. Информация о действительной величине электропроводности в МЭЗ искажается из-за запаздывания, а введение дополнительной электрохимической ячейки снижает надежность всей системы.  [c.133]

Однако значительное усложнение конструкции катодов, необходимость стабилизации удельной электропроводности межэлектродной среды в значительной мере ограничивают использование данной системы при формообразовании сложных поверхностей. Более широкие перспективы открываются при использовании дискретных систем, хотя при этом неизбежно некоторое снижение производительности.  [c.136]

При прошивке сквозных отверстий повышение давления в зоне-выхода электролита из электрохимической ячейки целесообразно достигать путем создания ступенчатого закона распределения давления, например с помощью кольцевой проточки на торце инструмента (рис. 167). При оптимальном соотношении глубины и ширины кольцевой проточки гидравлическое сопротивление в ней имеет незначительную величину. Давление электролита в основном падает на выходной и входной кромках инструмента поэтому в зоне выхода электролита из электрохимической ячейки создается повышенное давление, которое обеспечивает уменьшение-объема газа и увеличение удельной электропроводности межэлектродной среды. Использование кольцевой проточки позволяет выравнивать торцовые зазоры на входе и выходе электролита из ячейки.  [c.269]


В соответствии с анализом факторов, определяющих скорость анодного растворения, уменьшение величины бокового зазора можно достичь снижением удельной электропроводности межэлектродной среды созданием пассивных пленок на обрабатываемой поверхности изоляцией боковых стенок инструментов уменьшением торцового зазора в зоне рабочего буртика.  [c.270]

К группе погрещностей, определяемых технологическими факторами, относятся отклонения диаметра выбранного ЭИ от номинального значения погрешности пз-за неперпендикулярности оси ЭИ к поверхности ЭЗ погрешности, появляющиеся вследствие вибрации ЭИ под действием электрических разрядов, наконец, погрешности, вызванные изменением зазора вследствие загрязнения или уменьшения удельной электропроводности межэлектродной среды.  [c.156]

Процесс электрохимической обработки является сложным процессом вследствие повышения температуры электролита при прохождении через него больших токов, выделения водорода на катоде, образования продуктов анодного растворения и поляризации обоих электродов. Первый из перечисленных факторов повышает удельную электропроводность электролита, остальные приводят к ее уменьшению. Кроме того, повышение температуры приводит к уменьшению вязкости электролита, что изменяет, в свою очередь, гидродинамические характеристики режима протекания электролита через межэлектродный зазор.  [c.320]

Вторым путем повышения производительности является интенсификация процесса анодного растворения путем увеличения плотности технологического тока и выхода по току. Это достигается уменьшением сопротивления межэлектродной среды (уменьшением межэлектродных зазоров, повышением температуры электролита и его концентрации, использованием электролитов с более высокой удельной электропроводностью), подбором режимов электрохимической обработки (рода тока, типа электролита, гидродинамического режима, параметров технологического напряжения, pH электролита и др.), созданием условий, при которых введением в процесс дополнительных факторов снижается концентрационная поляризация и пассивация анода, подавляется и тормозится образование пассивных пленок или ускоряется их  [c.203]

С повышением температуры растет удельная электропроводность шлака, но уменьшается глубина погружения электрода, что снижает проводимость ванны. Этот фактор действует тем сильнее, чем меньше сечение плавящегося электрода, так как при малых сечениях электрода изменение линейных размеров больше при том же изменении количества расплавляемого металла. При малом сечении электрода изменения формы межэлектродного пространства достаточно для стабилизации температуры ванны. Процесс идет устойчиво даже при совершенно жесткой характеристике источника питания и различных составах шлаковой ванны.  [c.46]

Способы аналитического описания процессов, происходящих в ячейке, являются частными моделями, отображающими лишь отдельные свойства этих процессов, и из-за недостаточной точности и большой сложности математического описания малоприемлемы для практического применения при формировании систем регулирования МЭЗ [66, 192, 230]. Для проведения инженерных расчетов представляют интерес методы описания удельной электропроводности (или удельного сопротивления) межэлектродной среды, базирующиеся на проведении предварительных экспериментальных исследований электрохимической ячейки [13, 50]. Предложенная эмпирическая зависимость для удельной электропроводности межэлектродной среды основана на аппроксимации экспериментально полученной зависимости х = / (з) при постоянном напряжении на электродах  [c.120]

Рис. 76. Зависимости удельной электропроводности межэлектродной среды от величины МЭЗ при ЭХО в водных растворах электролитов Na l (о) и NaNOj (б) Рис. 76. Зависимости удельной электропроводности межэлектродной среды от величины МЭЗ при ЭХО в <a href="/info/48027">водных растворах</a> электролитов Na l (о) и NaNOj (б)

Работа ТЭП может осуществляться в следующих основных режимах вакуумном, т. е. без заполнения внутреннего объема парами цезия и в трех режимах с парами цезия — прямопролетном (квазивакуумном), диффузионном и дуговом. Результаты многочисленных экспериментальных исследований [44, 108, 111, 118, 130, 142, 144, 150, 151, 159] показывают, что наиболее перспективным и легко осуществимым является дуговой режим. При достаточно высокой температуре катода генерация ионов в межэлектродном пространстве происходит не только на поверхности катода, ко и во всем объеме межэлектродного пространства. Высокая электропроводность плазмы, образуемой в межэлектродном пространстве, позволяет значительно увеличить плотность тока, генерируемого ТЭП, и, следовательно, повысить удельную электрическую мощность ТЭП.  [c.19]

Значения термического коэффициента щ для различных электролитов можно принимать от 0,02 до 0,06 град . Для водного раствора Na l удельная электропроводность увеличивается на 2,5% при увеличении температуры его на один градус. Изменение электропроводности электролита по длине межэлектродного промежутка вызывает перераспределение плотностей технологического тока и влияет на точность электрохимического формообразования.  [c.179]

Площадь электродов и межэлектродное расстояние в контактных кондуктометрических и диэлькометрических преобразователях выбирают исходя из предполагаемых диапазонов изменения удельной электропроводности и диэлектрической проницаемости анализируемых жидкостей, с одной стороны, и выбранной частоты поля, входного импеданса, а также некоторых других характеристик электронно-измерительного блока — с другой.  [c.227]


Смотреть страницы где упоминается термин Электропроводность межэлектродной удельная : [c.85]    [c.108]    [c.121]    [c.319]    [c.83]    [c.216]    [c.412]    [c.917]   
Размерная электрохимическая обработка деталей машин (1976) -- [ c.7 , c.119 , c.123 , c.133 , c.269 ]



ПОИСК



Электропроводность

Электропроводность удельная



© 2025 Mash-xxl.info Реклама на сайте