Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энтропия большого канонического ансамбля

Экстремальное распределение (1.3.64) совпадает с большим каноническим распределением, если Т — температура, а /х — химический потенциал в расчете на одну частицу. Чтобы подтвердить правильность интерпретации параметров Т и /х, запишем энтропию большого канонического ансамбля  [c.60]

Напомним, что величина S в соотношении (1.3.82) — информационная энтропия большого канонического ансамбля, а Т = 1//5 вводится как множитель Лагранжа. Таким образом, мы приходим к выводу, что энтропию большого канонического ансамбля можно отождествить с термодинамической энтропией, выраженной через переменные Т, /I и а . Кроме того, мы видим что параметр Т в (1.3.82) совпадает с температурой термостата.  [c.64]


В случае статистики Ферми интерпретация дополнительного члена весьма проста он представляет собой формулу больцманов-ского типа для энтропии дырок, которую следует добавить к классическому члену для получения правильного выражения. В случае бозе-статистики интерпретация менее ясна. Можно показать,, что эта формула для энтропии дает правильный результат, совпадающий с выражением, которое получается с помощью функции распределения большого канонического ансамбля.  [c.271]

Рассмотрим теперь систему с фиксированным объемом V, находящуюся в контакте с термостатом, который служит также резервуаром частиц. Равновесное состояние такой системы описывается большим каноническим ансамблем а соответствующее статистическое распределение (классическое или квантовое) называется большим каноническим распределением. Мы получим это распределение, исходя из принципа максимума информационной энтропии.  [c.59]

В данном случае энергия и число частиц в системе не фиксированы, а флуктуируют около равновесных значений, поэтому большой канонический ансамбль характеризуется средними значениями (Я) и N). Итак, для классических систем равновесная функция распределения соответствует максимуму информационной энтропии  [c.59]

По аналогии с классическим случаем, построим теперь статистический оператор, описывающий большой канонический ансамбль квантовых систем. Для этого найдем экстремум информационной энтропии (1.3.53) при следующих дополнительных условиях на пробные статистические операторы д  [c.60]

Излагаемые ниже соображения основаны на том факте, что гидродинамические переменные а (г) соответствуют полу макроскопическим величинам, поскольку обрезающее волновое число Ajq было выбрано таким образом, чтобы пространственная ячейка с размерами / I/Ajq содержала большое число частиц. Тогда каждую из таких ячеек можно рассматривать как малую, но макроскопическую подсистему, взаимодействующую с другими ячейками через свои границы. Согласно общему принципу термодинамической эквивалентности статистических ансамблей (см. раздел 1.3.10 первого тома), можно считать, что энтропия S a) микроканонического ансамбля, определяемого условиями а г) = ft (r), является таким же функционалом от а (г) , как и энтропия Si a) локально-равновесного большого канонического ансамбля от (fl (r)) , если соответствующее фазовое распределение Qi q,p a) удовлетворяет условиям  [c.229]

В большом каноническом ансамбле (энтропия 5д) величина г/д есть среднее число частиц п, и, следовательно,  [c.61]


При дальнейшем развитии темы мы встречаемся и с другими величинами, которые при очень большом числе степеней свободы в основном совпадают с модулем и с средним показателем вероятности канонического ансамбля, взятым с обратным знаком, и которые, следовательно, также можно считать соответству-юш ими температуре и энтропии. Однако, если число степеней свободы не очень велико, то соответствие является неполным II введение этих величин не имеет никаких оснований кроме того, что они могут считаться более простыми по определению, нежели величины, упомянутые выше. В главе XIV это последование термодинамических аналогий развивается несколько подробнее.  [c.16]

В 9, в заключении статьи, Пуанкаре доказывает, что если начальная плотность вероятности была канонической функцией квадрата скорости, то при любых, как адиабатических, так и неадиабатических, изменениях внешних параметров кинетическая энергия в любой, более поздний (в частности, сколь угодно близкий) момент будет больше. В этом выводе Пуанкаре использует свойство тонкой энтропии сохранять свою величину. Следовательно, рассуждения Пуанкаре относятся к Г-пространству (так как только в Г-пространстве можно гово-рить об этом свойстве). Но в Г-пространстве величина, рассматриваемая им как кинетическая энергия системы, не имеет ничего общего с кинетической энергией данной системы,. а является средней кинетической энергией ансамбля. Доказываемое же им утверждение оказывается тривиальным следствием предположения о плотности распределения ансамбля в начальный момент, не имеющим никакого отношения к изме-  [c.51]

Это уравнение имеет форму термодинамического уравнения для обобщенной функции Массьё — Планка. Если флуктуации около значения XJ достаточно малы, то не возникает вопроса об идентификации Х1 н XJ с соответствующими термодинамическими переменными. Это нетрудно показать для систем с большим числом степеней свободы. Таким образом, нам надо показать, что и обладают свойствами соответствующих термодинамических интенсивных параметров. Подробности этого доказательства можно найти в общих курсах статистической механики, поэтому здесь мы их опустим. В результате мы приходим к выводу, что является статистическим аналогом функции Массьё — Планка Ф (Р , Х . Тем же путем мы можем, применяя микроканониче-ский ансамбль, обнаружить соответствие между А1п2 и энтропией, а применяя канонический ансамбль, — соответствие между и свободной энергией Гельмгольца.  [c.64]


Смотреть страницы где упоминается термин Энтропия большого канонического ансамбля : [c.57]    [c.46]    [c.46]   
Статистическая механика неравновесных процессов Т.2 (2002) -- [ c.60 ]



ПОИСК



Ансамбль

Ансамбль большой канонический

Ансамбль канонический

Вид канонический

Канонический ансамбль и большой канонический ансамбль

Энтропия

Энтропия в каноническом ансамбл

Энтропия канонического ансамбля



© 2025 Mash-xxl.info Реклама на сайте