Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тензор деформаций конечных А.Е.Грин

Деформированное состояние рассматриваемого тела будет определяться тензором конечной деформации Коши — Грина  [c.302]

Первый тензор конечной деформации. Замена в выражении первой меры деформации вектор-радиуса R точки V-объема его значением через вектор перемещения и вводит в рассмотрение симметричный тензор второго ранга, называемый первым тензором конечной деформации (Коши — Грина) и обозначаемый далее  [c.75]


Некоторый объем сплошной среды испытывает деформацию Xl = Xl, х = Х + AXs, Хз = Хз + ЛХа, где А — константа. Вычислить тензор деформаций Грина G и использовать его для определения лагранжева тензора конечных деформаций Le.  [c.138]

Рассмотрим первый подход. Предположим, что состояние рассматриваемой сплошной среды в окрестности любой материальной точки определяется четырьмя термодинамиче скими функциями — активными переменными массовыми плотностями свободной энергии А и энтропии Н, вторым тензором напряжений Пиолы-Кирхгофа с компонентами и вектором плотности теплового потока с компонентами qoi, г,] = 1,2,3. Аргументами этих функций будем считать следующие реактивные переменные тензор конечной деформации Грина с компонентами Ькь абсолютную температуру Т, материальный градиент температуры, компоненты которого  [c.78]

Из соотношения (5.35) следует, что единственная явная зависимость массовой плотности свободной энергии от компонентов тензора конечной деформации Грина — это зависимость через якобиан J t) очевидно, что такая зависимость эквивалентна зависимости от плотности массы p t). Если допустить для соотношения (5.35) зависимость от деформации более общую, чем через одну скалярную величину J(i), то будет нарушено предположение об отсутствии предпочтительной конфигурации. Отсюда также следует, что рассматриваемая сплошная среда изотропна, поскольку функционал (5.35) удовлетворяет принципу объективности.  [c.123]

Используя выражения (2.17) для компонентов тензора конечной деформации Грина, с помощью соотнощений (2.15) и (2.63) можно показать, что  [c.124]

Выражения в скобке представляют компоненты симметричного тензора второго ранга, которые с множителем принимаются за меру деформации. Этот тензор, отнесенный к системе координат начального (до деформации) состояния Xi, называется тензором конечных деформаций Грина. Его компоненты будем обозначать е  [c.118]

Здесь г — радиус-вектор лагранжевых координат, дуль упругости, V — коэффициент Пуассона, 6, — символ Кро некера, Ёу (г) — компоненты тензора вынужденной деформации, Ёц (г) — компоненты тензора конечных деформаций Коши — Грина в базисе начального состояния, (г) — компоненты тензора напряжения Коши в базисе актуального состояния.  [c.296]

В общем случае изучение механических процессов в начально-деформированных телах необходимо проводить в рамках нелинейной теории упругости. Однако, множество процессов, происходящих в начально-деформированных телах, можно рассматривать в рамках линеаризованной теории наложения малых деформаций (возмущений) на конечные деформации (начальное состояние) в предположении, что возмущения малы. Традиционно [30, 41, 42] различают три состояния тела естественное (ненапряженное) состояние (ЕС), начально-деформированное состояние (НДС) и актуальное (возмущенное по отношению к НДС) состояние. При этом особое значение приобретает выбор системы координат, которая может быть связана либо с естественной конфигурацией (система координат Лагранжа или материальная система координат), либо с актуальной конфигурацией (система координат Эйлера) [30, 41, 42]. Линеаризованные уравнения движения существенным образом зависят как от выбора системы координат, так и от выбора определяющих соотношений, поскольку имеет место возможность определения напряженного состояния различными тензорами (Коши, Пиола, Кирхгофа и т.д.) и множественность их представления через меры деформации (Коши-Грина, Фингера, Альманзи) или градиент места. Более детально с особенностями постановки задач для преднапряженных тел можно ознакомиться в монографиях А. И. Лурье [41], А. Лява [42] и А. Н. Гузя [30].  [c.290]


Слово линейный относится здесь к зависимости напряжений от прошедшей предыстории С — относительной деформа- ции. Природа памяти материала линейна в том смысле, что неупругие напряжения, соответствующие предыстории деформации, приводящей к относительному правому тензору Коши — Грина Сг, представляют собой сумму неупругих напряжений, соответствующих любым двум предысториям деформации, сумма относительных правых тензоров Коши — Грина которых равна С . От текущего тензора деформации (i) напряжения могут зависеть произвольным образом. Колеман и Нолл заметили, что выбор в качестве исходной любой другой из бесконечного, множества приведенных форм для общего определяющего соотношения также приводил бы тем же самым способом к линейному результату, но другому. Поскольку теория, которая линейна при одной мере деформации ), например С<, может быть нелинейной при другой мере, например U<, то получаемые таким образом теории конечных деформаций, вообще говоря, отличаются одна от другой, но, разумеется, все они согласуются друг с другом в смысле аппроксимации (1), т. е. напряжения, соответствующие, согласно этим теориям, семейству предысторий градиента такому, что IIF — F (041-> О, асимптотически равны между собой.  [c.389]

Задача вычисления силовых и моментпых -напряжений равноценна нахождению деформаций е и изгибов — кручений Решения для них удается выразить в квадратурах через 7а, если известен соответствующий тензор Грина. Когда тело не нагружено внешними усилиями и имеет нулевые решения на бесконечности (что справедливо при ограничениях финитного характера для функции мотора 7а от координат), выражения для е и получаются конечными. В качестве примера приведем решения, справедливые для изотропной среды со стесненными поворотами (оз = Q, е е ), которые заимствуем, переписав их в безиндексной записи, из [61]  [c.118]

Тензор Ед иногда называют лагранжевым тензором конечных деформаций (или тензором конечных деформаций Грина ), а тензор E — эйлеровым тензором конечных деформаций (или тензором конечных деформаций Альманси).  [c.66]


Смотреть страницы где упоминается термин Тензор деформаций конечных А.Е.Грин : [c.472]    [c.28]    [c.29]    [c.8]    [c.277]    [c.75]    [c.27]    [c.151]    [c.44]    [c.44]    [c.123]    [c.119]   
Механика сплошных сред (2000) -- [ c.27 ]



ПОИСК



Грина

Грина тензор деформаций

Деформации конечные

Лагранжев тензор конечных деформаций Грина)

Тензор Грина

Тензор деформаций

Тензор конечных деформаций

Тензоры деформаций. Тензоры конечных деформаций



© 2025 Mash-xxl.info Реклама на сайте