Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сфера обтекание потоком вязкой жидкости

Механическое взаимодействие. Для одиночной частицы в стационарном потоке вязкой жидкости аналитическое определение величины Со оказывается возможным только в двух предельных случаях, которые были исследованы Стоксом и Ньютоном. Стокс получил решение, соответствующее очень низким относительным скоростям, отбросив члены в уравнении Навье—Стокса, связанные с инерциальными силами (Re —О). Такой режим течения, которому соответствуют числа Рейнольдса от О до 0,1, называется течением Стокса и характеризуется симметричной картиной обтекания сферы как перед, так и после тела. Полученное Стоксом приближение дает для результирующей силы сопротивления зависимость  [c.48]


Рассматривая, для определённости, задачу об обтекании покоящейся сферы, центр которой находится в начале координат, потоком вязкой жидкости, будем, очевидно, иметь следующие граничные условия  [c.504]

Необходимое условие возникновения О. т. вязкой Жидкости — повышение давления в направлении течения, т. е. убывание скорости. Типичным примером такого течения при дозвуковых скоростях потока является течение у поверхности с образующими криволинейной формы (напр., у профиля крыла при больших углах атаки, сферы), в диффузоре, канале с уступом и др. При обтекании тела криволинейной формы (рис. 1) в пределах толпщны б пограничного слоя по нормали к поверхности скорость течения убывает от значения на  [c.515]

В двух статьях, опубликованных в 1845 и 1851 гг., Стокс впервые дал известное решение задачи о ползущем движении. В последней из них [Л. 1] он использовал приближенное уравнение (8-2), чтобы решить задачу об очень медленном обтекании неподвижного шара потоком жидкости И обращенную задачу о падении твердого шара в безграничной очень вязкой жидкости. Наряду с уравнением (8-2) полученное решение удовлетворяет уравнению неразрывности и обычному граничному условию относительная скорость на поверхности сферы обращается в нуль. Математические детали этой теории выходят за рамки настоящей книги (Л. 2, 5 ], однако основные ее результаты мы приведем. Они заключаются в следующем.  [c.187]

Обтекание сферы реальным потоком вязкой жидкости существенно отличается от описанного теоретического, так как сфера является неудобообтекаемым телом и влияние вязкости и вихре-образования в этом потоке очень велико.  [c.280]

Экспериментальное значение коэффициента сопротивления пластины, поставленной нормально к потоку, может достигать значений G = 2. Следует, однако, иметь в виду, что структура течения в ближнем следе, а значит, и давление на тыльной стороне обтекаемого тела существенно зависят от числа Рейнольдса. По рис. 10.2 можно проследить характер изменения структуры потока за сферой при изменении Re от 9,15 до 133, а по рис. 10.7 — за цилиндром при Re == 0,25. .. 57,7. Но возможны и другие конфигурации потока. Они в значительной степени определяются также формой и положением обтекаемого тела. Так, например, при обтекании цилиндрических тел крылового профиля при малом угле атаки (см. рис. 8.30, а) возможно практически безотрывное течение, при котором форма линий тока для вязкой жидкости близка к форме этих линий для идеальной жидкости. Но при возрастании угла атаки увеличиваются положительные градиенты давлений на выпуклой части поверхности профиля и это в итоге приводит и отрыву пограничного слоя, который быстро сверты-  [c.391]


Вспомним, например, задачу Стокса об обтекании вязкой жидкостью сферы ( 82), или расчет диффузии завихренности, образованной вихревой нитью ( 84). Во всех этих случаях влияние вязкости распространялось мгновенно, а в безграничных потоках и на бесконечно большие расстояния. Этот принципиальный факт является прямым следствием обобщенного закона Ньютона, выражавшего линейную связь между тензорами напряжений и скоростей деформаций, и сбуславливает эллиптический характер диффе-  [c.440]

Отрыв потока в случае обтекания капли в отличие от обтекания твердой частицы весьма затянут, а вихревая зона оказывается значительно более узкой. Если в случае твердой сферы отрыв потока и образование кормовой вихревой зоны начинается с Ке и 10 (число Ке определяется по радиусу сферы), то в случае капли безотрывное обтекание может иметь место вплоть до значений Ке и 50. В диапазоне чисел Рейнольдса 1 Ке 50 широко применяются численные методы. Результаты, полученные с их помощью, обсуждаются в [219]. Внутренняя циркуляция жидкости при таких числах Рейнольдса значительно интенсивнее, чем описываемая решением Адамара — Рыбчинского. Скорость на границе капли быстро увеличивается с ростом числа Рейнольдса даже для достаточно вязких капель. В предельном случае малой вязкости дисперсной фазы /3 0 (что соответствует случаю газового пузыря) для внешнего течения при Ке 3> 1 может быть использовано приближение идеальной жидкости.  [c.57]


Смотреть страницы где упоминается термин Сфера обтекание потоком вязкой жидкости : [c.364]    [c.504]    [c.252]    [c.155]    [c.510]   
Гидродинамика при малых числах Рейнольдса (1976) -- [ c.144 , c.146 ]



ПОИСК



Жидкость вязкая

Обтекание

Обтекание сферы

Обтекание сферы потоком вязкой жидкост

Обтекание сферы потоком вязкой жидкост

Обтекание тел жидкостью

Поток жидкости

Сфера

Сфера в потоке



© 2025 Mash-xxl.info Реклама на сайте