Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Координаты Гаусса внутренние

В своей названной работе (в статье 18) Гаусс выводит уравнение (40.4) из принципа кратчайшего пути. Здесь нам хотелось лишь указать на то, что гауссов метод криволинейных координат на поверхности (40.2) совпадает с лагранжевым методом механики системы. Оба метода инвариантны по отношению к любому преобразованию координат и зависят только от внутренних свойств поверхностей или, соответственно, механических систем.  [c.287]


Первая из них, называемая методом интегрирования Маркова [10], имеет обычный вид (5.91). Отличительной чертой метода Маркова является специфический выбор точек интегрирования. Две крайние точки всегда совпадают с концами отрезка, а положение внутренних определяется (наряду с весовыми коэффициентами) так же, как и в методе Гаусса, т. е. из условия, чтобы интегрирование было точным для полинома максимально высокой степени. Заметим, что двухточечная схема Маркова совпадает с правилом трапеции, а трехточечная — с правилом Симпсона. В четырехточечной схеме координаты внутренних точек оказываются равными 1/V5 при этом интегрирование дает точный результат для любого полинома от  [c.191]

Поверхность тела представляется при помощи четырехугольных и треугольных элементов с квадратичным изменением формы и линейным, квадратичным или кубическим изменением перемещения и вектора напряжений относительно внутренней системы координат. Тело разбивается на подобласти производится дискретизация интегрального уравнения для каждой подобласти, и получается система уравнений ленточного типа. Для вычисления интегралов используется квадратурная формула Гаусса, число узлов в которой выбирается на основании верхней оценки для ошибки, определенной по значениям производных от подынтегральных выражений. Масштаб коэффициентов в уравнениях выбирается таким образом, чтобы получить устойчивую при счете систему, разрешимую методом исключения без итерации остатков. Поблочное решение уравнений позволяет рассматривать большие задачи. В программе используется большое число процедур, осуществляющих контроль и автоматическое формирование данных. Результаты решения задачи о фланце трубопровода и характеристики выполнения программы сравниваются с результатами, полученными методом конечных элементов, и экспериментальными результатами.  [c.111]

Равенство (12.7) иногда называют глобальной формой первого закона, поскольку оно относится к конечному объему материала. В случае достаточной гладкости рассматриваемых величин с помощью теоремы Грина — Гаусса можно получить локальную форму первого закона, служащую выражением энергетического баланса в точке сплошной среды. Чтобы получить эту локальную форму, рассмотрим текущую конфигурацию твердого тела С (мы пользуемся обозначениями, введенными в гл. I). Фиксируем систему внутренних координат x , первоначально прямоугольных декартовых в конфигурации Со, естественными базисными векторами которой являются введенные в гл. I взаимные векторы и В начальной конфигурации базис образован ортонормальными векторами г, и прямоугольные (пространственные) координаты точки в С, представляющие собой бывшие координаты x в Со, обозначаются, как и раньше, через Поле скоростей у, поле ускорений а и поле теплового потока д задаются соотношениями  [c.193]


Арифметизируем точки поверхности с помощью системы криволинейных координатх (1= 1,2). Эти координаты представляют собой внутренние координаты Гаусса точек поверхности. Местный координатный базис образуют оси х1 и х ,  [c.427]


Смотреть страницы где упоминается термин Координаты Гаусса внутренние : [c.110]    [c.285]    [c.31]   
Курс теоретической механики. Т.1 (1972) -- [ c.427 ]



ПОИСК



Гаусс

Гауссова

Координаты Гаусса

Координаты Гауссовы

Координаты внутренние



© 2025 Mash-xxl.info Реклама на сайте