Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деполяризаторы

Возможность подразделения процесса растворения металлов в электролитах на два сопряженных процесса — анодный и катодный — облегчает в большинстве случаев его протекание по сравнению с химическим взаимодействием. При электрохимическом взаимодействии окислитель играет лишь роль деполяризатора, отнимающего валентные электроны металла и обеспечивающего переход металла в ионное состояние, но не вступает с ним при этом в химическое соединение [вторичные процессы и продукты коррозии при электрохимическом механизме коррозии металлов могут иметь место (см. с. 212), но они не обязательны].  [c.181]


Т. е. для электрохимического растворения металла необходимо присутствие в электролите окислителя — деполяризатора, обратимый окислительно-восстановительный потенциал которого по-ложительнее обратимого потенциала металла в данных условиях. При соблюдении этого условия >> 0. а < 0.  [c.182]

Повышенная коррозионная стойкость металлов может быть обусловлена различными причинами, в частности термодинамической устойчивостью, т. е. инертностью металла, отсутствием в электролите деполяризатора, затрудненностью доставки деполяризатора к поверхности металла, сильным торможением про-  [c.302]

На катоде ион с повышенной валентностью действует как катодный деполяризатор (336)  [c.352]

Таким образом, происходит непрерывная регенерация дополнительного деполяризатора, растворимость которого значительно больше, чем кислорода в водных растворах, что и ускоряет коррозионный процесс.  [c.352]

Температура оказывает в большинстве случаев значительное влияние на скорость электрохимической коррозии металлов, так как изменяет скорость диффузии, перенапряжение электродных процессов, степень анодной пассивности, растворимость деполяризатора (например, кислорода) и вторичных продуктов коррозии.  [c.353]

Нарушение равновесия (713) при наличии другого катодного процесса может также привести к растворению (коррозии) металла это происходит с металлами в расплавах солей в присутствии дополнительных катодных деполяризаторов (окислителей). При этом устанавливается необратимый электродный потенциал металла, устойчивое значение которого во времени принято называть стационарным электродным потенциалом.  [c.408]

Затрудненность доставки в щель окислителя— катодного деполяризатора (которая в достаточно узких щелях может быть чисто диффузионной), затрудняет протекание катодного процесса, увеличивая его поляризуемость. Уменьшение pH среды за счет гидролиза продуктов коррозии облегчает протекание анодного процесса, уменьшая его поляризуемость (облегчая ионизацию металла и затрудняя образование защитных пленок), что приводит к усиленной работе макропары металл в щели (анод) —металл открытой поверхности (катод).  [c.415]

Измерения показывают, что в не слишком глубоких щелях система оказывается практически полностью заполяризованной, т. е. роль омического фактора при щелевой коррозии невелика. В пределах одной щели могут возникать макроэлементы вследствие неодинаковой скорости доставки деполяризатора или коррозионной среды и отвода продуктов реакций у краев щели и  [c.416]

Если в электролите имеется какой-либо окислитель, способный восстанавливаться па данном катодном материале, то он может, наряду с кислородом, принимать участие в процессе деполяризации катода. Обычно в большинстве случаев коррозии основным катодным деполяризатором является растворенный в электролите кислород воздуха.  [c.46]


Такие окислители, как хроматы и бихроматы, являются плохими катодными деполяризаторами и в то же время сильно пассивируют практически важные металлы (Ее, А1, 2п, Си). Достаточно добавить с водопроводную воду 0,1% двухромовокислого калия, чтобы ре 5ко снизить скорость коррозии углеродистой стали п алюминия. При содержании в воде сильных активаторов коррозии (например, хлористых солей) концентрацию бихромата следует увеличить до 2—3%. Хроматы и бихроматы относятся к типу смешанных замедлителей коррозии, но тормозят преимущественной анодный процесс.  [c.312]

Способность металла посылать свои ионы в раствор характеризуется количественно значением обратимого потенциала в данных условиях, т. е. (1 а)обр = ( мЛобр- Способность данного деполяризатора D восстанавливаться, т. е. осуществлять катодный процесс ассимиляции электронов, определяется количественно значением обратимого потенциала данной катодной окислительновосстановительной реакции, т. е. (VJo6p = ( ок-в)обр-  [c.177]

При замыкании в электролите двух обратимых электродов с разными потенциалами [(Уа)обр и (VJoepl происходит перетекание электронов от более отрицательного электрода (анода) к менее отрицательному (или более положительному) электроду (катоду). Это перетекание электронов выравнивает значения потенциалов замкнутых электродов. Если бы при этом электродные процессы (анодный на аноде и катодный на катоде) не протекали, потенциалы электродов сравнялись бы и наступила бы полная поляризация. В действительности анодный и катодный электродные процессы продолжаются, препятствуя наступлению полной поляризации вследствие перетекания электронов с анода к катоду, т. е. действуют деполяризующие. Отсюда, в частности, происходит и название ионов и молекул раствора, обеспечивающих протекание катодного npow a — деполяризаторы. Однако из-за отставания электродных процессов от перетока электронов в гальваническом элементе (см. с. 192) потенциалы электродов изменяются (сближаются) и короткозамкнутая система, в конечном итоге, полностью заполяризовывается (см. с. 271, 282 и 287).  [c.191]

Процессы, уменьшающие анодную поляризацию, называются деполяризационными процессами (например, перемешивание, снижающее концентрационную поляризацию), а вещества, их осуществляющие, — анодными деполяризаторами (например, ком-плексообразователи NHg, N и др., сильно понижающие активность простых ионов металлов в растворе вследствие их связывания втруднодиссоциирующие комплексы, или иоиыСГ, затрудняющие наступление анодной пассивности металлов).  [c.197]

Замедленность диффузии деполяризатора из объема электролита к катодной поверхности или продукта катодной деполя-ризационной реакции в обратном направлении, которая приводит к концентрационной поляризации катода (А1/к)конц- Более подробно явления катодной поляризации будут рассмотрены ниже для наиболее часто встречающихся катодных процессов кислородной и водородной деполяризации (см. с. 223 и 251).  [c.198]

Электродные процессы электрохимической коррозии металлов обязательно включают в себя, как всякий гетерогенный процесс, помимо электрохимической реакции, стадии массопереноса, осуществляемые диффузией или конвекцией отвод продукта анодного процесса (ионов металла) от места реакции — поверхности металла, перенос частиц деполяризатора катодного процесса к поверхности металла и отвод продуктов катодной деполяризацион-ной реакции от места реакции — поверхности металла в глубь раствора и т. п. Суммарная скорость гетерогенного процесса определяется торможениями его отдельных стадий. Если, однако, торможение одной из последовательных его стадий значительно больше других, то сумм.арная скорость процесса определяется в основном скоростью этой наиболее заторможенной стадии. В коррозионных процессах довольно часты случаи диффузионного или диффузионно-кинетического контроля, т. е. значительной заторможенности стадий массопереноса. В связи с этим диффузионная кинетика представляет теоретический и практический интерес.  [c.204]

Зависимость скорости коррозии железа и углеродистых сталей от концентрации хлоридов и сульфатов нейтральных растворов имеет вид кривых с максимумом (см. рис. 242), зависящим от природы растворенной соли. С ростом концентрации солей увеличивается концентрация ионов хлора, сульфата и аммония, активирующих и облегчающих анодный прйцесс, и уменьшается растворимость деполяризатора кислорода (см. рис. 162), что затрудняет протекание катодного процесса. В каком-то интервале концентраций сильнее сказывается первый эффект, а затем преобладает второй.  [c.345]


При недостаточной концентрации анодных ингибиторов для наступления полной пассивности металла (особенно в присутствии активных депассивирующих ионов, например, ионов СГ) они являются о гасными, так как могут ускорить общую или местную коррозию, действуя как катодные деполяризаторы (рис. 245 и 246).  [c.347]

Иногда к катодным ингибиторам электрохимической коррозии металлов относят поглотители кислорода сульфит натрия NaaSOg, гидразин-гидрат N2H4-H20 и другие восстановители понижают скорость коррозии металлов с кислородной деполяризацией в нейтральных растворах, связывая деполяризатор—кислород по реакциям  [c.349]

Радиолизный эффект облегчает протекание катодного процесса в результате образования окислителей-деполяризаторов (HjOg,  [c.370]

Катодные включения (например, Си, Pd) заметно повышают коррозионную стойкость железоуглеродистых сплавов в атмосфере даже при незначительном их содержании (десятые доли процента меди — рис. 272). В процессе коррозии медистой стали в электролит (увлажненные продукты коррозии) переходит и железо, и медь, но ионы последней, являясь по отношению к железу катодным деполяризатором, разряжаются и выделяются на его поверхность в виде мелкодисперсной меди. Медь является весьма эффективным катодом и при определенных условиях, например, при повышенной концентрации окислителя — кислорода у поверхности металла, что имеет место при влажной атмосферной коррозии, и отсутствии депассивирующих ионов, способствует пассивированию железа  [c.381]

Катодными деполяризаторами в расплавленных солях, согласно Н. И. Тугаринову и Н. Д. Томашову, могут быть растворенный в расплаве кислород, вода необезвоженного расплава, ряд способных к восстановлению ионов расплава (Са " , Fe ) и другие вещества, способные к ассимиляции электронов на поверхности корродирующего в расплаве металла по реакциям  [c.408]

Начальные участки поляризационных кривых (рис. 293) указывают на преобладание катодного контроля при коррозии железа в расплаве Na l, а значение энергии активации катодного процесса в этой области (18 ккал/моль — рис. 294) близко к значению энергии активации вязкости Na l (13 ккал/моль), что указывает на контроль катодного процесса диффузией основного деполяризатора (кислорода) к катоду, скорость которой в значительной мере зависит от вязкости расплава.  [c.409]

Пропускание через расплавленный Na l воздуха, кислорода, углекислоты и водяного пара, а также введение добавок сульфатов, карбонатов, нитритов натрия, хлористого кальция и других деполяризаторов облегчает протекание катодного процесса на железном электроде, в то время как торможение анодного процесса на железном электроде оказывает только добавка карбоната натрия. Добавка в расплав 95% Na l + 5% Naj Oa карбида кремния в количестве 5% полностью нейтрализует действие соды  [c.412]


Смотреть страницы где упоминается термин Деполяризаторы : [c.177]    [c.191]    [c.234]    [c.247]    [c.323]    [c.331]    [c.338]    [c.344]    [c.361]    [c.378]    [c.399]    [c.408]    [c.412]    [c.412]    [c.413]    [c.426]    [c.18]    [c.19]    [c.32]    [c.32]    [c.37]    [c.37]    [c.56]    [c.71]    [c.75]    [c.109]    [c.204]   
Справочник машиностроителя Том 2 (1955) -- [ c.356 ]

Теплотехнический справочник (0) -- [ c.570 ]

Металловедение и термическая обработка стали Т1 (1983) -- [ c.253 ]

Металловедение и термическая обработка стали Справочник Том1 Изд4 (1991) -- [ c.2 , c.366 ]

Теплотехнический справочник Том 1 (1957) -- [ c.570 ]

Водный режим и химический контроль на ТЭС Издание 2 (1985) -- [ c.31 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.2 , c.356 ]



ПОИСК



Катодный деполяризатор

Коррозия металлов, аминнрование деполяризаторы



© 2025 Mash-xxl.info Реклама на сайте