Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ОБЩИЕ ТЕОРЕМЫ И ЗАКОНЫ СОХРАНЕНИЯ ДИНАМИКИ

ОБЩИЕ ТЕОРЕМЫ И ЗАКОНЫ СОХРАНЕНИЯ ДИНАМИКИ ТОЧКИ  [c.110]

Общие теоремы и законы сохранения динамики точки  [c.119]

ГЛАВА 111. ОБЩИЕ ТЕОРЕМЫ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ И ЗАКОНЫ СОХРАНЕНИЯ  [c.110]

Мы уже останавливались на характеристике общего смысла теоремы об изменении кинетической энергии в динамике точки 209 т. 1). Там была отмечена связь между этой теоремой и общим законом превращения и сохранения энергии.  [c.93]


Одно из преимуществ, которое получается при использовании формулы, о которой идет речь, заключается в том, что она непосредственно приводит к общим уравнениям, в которых содержатся принципы или теоремы, известные под названием принципов сохранения живых сил, сохранения движения центра тяжести, сохранения моментов вращения, или принципа площадей, и принципа наименьшего действия. Однако все эти принципы следует рассматривать скорее как общие выводы из законов динамики, чем как первоначальные принципы этой науки, но так как при разрешении задач их зачастую все-таки принимают в качестве основных положений, то мы считаем необходимым здесь на них остановиться и указать, в чем они заключаются и каким авторам они обязаны своим происхождением, дабы не допустить существенного пробела в настоящем предварительном изложении принципов динамики.  [c.314]

Одно из преимуществ, которое получается при использовании этой формулы, заключается в том, что она непосредственно приводит к общим уравнениям, в которы х содержатся принципы или теоремы, известные под названием принципов сохранения живых сил, сохранения движения центра тяжести, сохранения моментов вращения или принципа площадей и принципа наименьшего действия В этом же месте Лагранж подчеркивает Однако все эти принципы следует рассматривать скорее как общие выводы из законов динамики, чем как первоначальные принципы этой науки .  [c.227]

Под общими законами динамики понимаются законы изменения количества движения, момента количества движения и кинетической энергии, а также различные условия, при выполнении которых из этих законов могут быть получены интегралы движения. Несмотря на значительные успехи аналитической механики, общие законы динамики и получающиеся из них интегралы движения играют до настоящего времени очень важную роль. Н. Е. Жуковский в своих исследованиях широко использовал общие законы динамики. В 1893 г. была решена сложная задача о движении без скольжения по горизонтальной плоскости полого шара с гироскопом внутри. В 1897 г. С. А. Чаплыгин указал на ряд новых условий, при выполнении которых имеют место интегралы движения, представляющие собою обобщение известных интегралов сохранения количества движения и момента количества движения. Одновременно он проиллюстрировал их применение на ряде систем, состоящих из нескольких катающихся и скользящих друг по другу твердых шаров. В 1903 г., опираясь на найденное им обобщение закона сохранения момента количества движения (теоремы площадей), С. А. Чаплыгин дал блестящее решение общей задачи о катании симметричного шара по горизонтальной плоскости.  [c.48]


Важное значение для решения задач М. имеют понятия о динамич. мерах движения, к-рыми явл. количество движения, момент количества движения (или кинетич. момент) и кинетическая энергия, и о мерах действия силы, каковыми служат импульс силы и работа. Соотношение между мерами движения и мерами действия силы дают т. н. общие теоремы динамики. Эти теоремы и вытекающие из них законы сохранения кол-ва движения, момента кол-ва движения и механич. энергии выражают св-ва движения любой системы матер, точек и сплошной среды.  [c.415]

Прямая задача динамики для системы материальных точек сводится к решению системы ЗN дифференциальных уравнений, так как уравнение движения вида (11.1) для каждой из N точек системы дает в проекции на координатные оси три дифференциальных уравнения для координат точки хД/),>>Д ), ,(/). Строгое аналитическое решение удается найти лишь в исключительных случаях, поэтому обычно используют приближенные методы. Однако существует несколько строгих общих законов, которые хотя сами по себе и не позволяют в общем случае найти траектории отдельных точек системы, вместе с тем дают важную информацию о движении системы в целом. Это закон (или теорема) о движении центра масс и три закона изменения и сохранения импульса, момента импульса и механической энергии системы материальных точек. Их выводу и обсуждению посвящена настоящая глава.  [c.38]

Предварительные замечания, В обшем курсе динамики системы изложены так называемые законы динамики, т. е. некоторые об-и1ие теоремы, указывающие, как изменяются скорости частиц системы в зависимости от данных активных сил и от реакций связей. Это были закон изменения количества движения, закон изменения кинетического момента и закон изменения кинетической энеогии. Каждая такая теорема в частном предположении об активных силах и реакциях системы может непосредственно привести к интегралам уравнений движения к закону сохранения количества движения (или сохранения движения центра масс), к закону сохранения кинетического момента, к закону сохранения энергии. Но зато, вообще говоря, ни один из названных законов не в состоянии заменить собой всей совокупности уравнений движения системы. Другими словчми, движение системы в общем случае не может быть, вполне охарактеризовано одним каким-либо из упомянутых законов.  [c.347]


Смотреть страницы где упоминается термин ОБЩИЕ ТЕОРЕМЫ И ЗАКОНЫ СОХРАНЕНИЯ ДИНАМИКИ : [c.114]   
Смотреть главы в:

Основы классической механики  -> ОБЩИЕ ТЕОРЕМЫ И ЗАКОНЫ СОХРАНЕНИЯ ДИНАМИКИ



ПОИСК



ДИНАМИКА Законы динамики

ДИНАМИКА Общие теоремы динамики

Закон сил общий

Закон сохранения

Законы динамики

Общая динамика

Общие теоремы

Общие теоремы динамики материальной точки и законы сохранения

Сохранение

Теорема сохранения

Теоремы динамики

Теоремы динамики общие



© 2025 Mash-xxl.info Реклама на сайте