Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Физические основы прочности металлов и сплавов

ФИЗИЧЕСКИЕ ОСНОВЫ ПРОЧНОСТИ МЕТАЛЛОВ И СПЛАВОВ  [c.122]

ФИЗИЧЕСКИЕ основы ПРОЧНОСТИ МЕТАЛЛОВ и СПЛАВОВ [гл. V  [c.128]

Цветные металлы и сплавы на их основе, несмотря на более высокую стоимость по сравнению со сплавами н основе железа, нашли широкое применение в различных отраслях машиностроения. Это объясняется их уникальными физическими и химическими свойствами, а в ряде случаев высокой удельной прочностью, что является определяющим фактором для таких областей, как авиа- и ракетостроение.  [c.100]


Курс металловедения состоит из двух основных частей. В первой, общей части излагаются теоретические основы металловедения, кристаллическое строение металлов и теория сплавов, учение о пластической деформации и прочности металлов, диаграмма сплавов железа с углеродом, а такл<е основы термической и химико-термической обработки во второй, специальной части описаны конструкционные и инструментальные ста.чи, стали и сплавы с особыми физическими и химическими свойствами, цветные, подшипниковые и порошковые сплавы.  [c.7]

В послевоенные годы область применения стали и вообще сплавов на основе железа суживается, они становятся преимущественно конструкционным материалом, качество которого определяется в основном прочностью. Требования к жаропрочности, окалиностойкости и физическим свойствам материалов послевоенной техники настолько повышаются, что во многих случаях для их обеспечения потребовались сплавы на других основах — никеля, кобальта, тугоплавких металлов и пр. Однако ограничение требований к качеству стали показателями прочности не означает их упрощения. Усложнение условий работы объектов современного машиностроения и повышение их ответственности исключают возможность однозначно характеризовать сталь пределом прочности, как это делалось многие годы. Требование прочности ныне входит в критерий качества материала наряду с новым для материаловедения требованием надежности.  [c.192]

Титан имеет преимущество перед другими конструкционными металлами сочетание легкости, прочности и коррозионной стойкости. Титановые сплавы по удельной прочности (т. е. прочности, отнесенной к плотности) превосходят большинство сплавов на основе других металлов при температурах от —250 до +550 °С, а по коррозионной стойкости они сравнимы со сплавами благородных металлов. Физические свойства титана приведены в табл. 8.32.  [c.297]

В металлах, используемых обычно в качестве материалов для конструкций, мельчайшие частицы, которые допустимо считать однородными (кристаллические зерна), отличаются в огромном большинстве случаев весьма малыми размерами по сравнению с размерами элементов конструкций. Средний диаметр этих зерен представляет собой величину порядка самое большее нескольких миллиметров, обычно же он составляет всего лишь от 0,1 до 0,01 мм. Для сравнения укажем, что расстояния между атомными частицами в кристаллической решетке измеряются величинами порядка 10 см. Изучение тонкой кристаллической структуры металлов и их сплавов при помощи оптического и электронного микроскопов позволило получить важные сведения относительно влияния структуры на прочностные характеристики металлов, а также обнаружить видимые изменения в зернистой структуре, сопровождающие пластическую деформацию твердых металлов или вызывающие их разрушение. Металл с весьма мелкозернистой структурой обладает обычно большей прочностью, чем тот же металл со структурой крупнозернистой. Так как размер зерна и состояние кристаллической структуры находятся в тесной зависимости от технологии и подвергаются резким изменениям под воздействием механической и термической обработки металла, то очевидно, что эти металлургические факторы оказывают большое влияние на свойства, определяющие механическую прочность металлов. Поскольку, однако, эти факторы не поддаются анализу на основе законов механики, они здесь не рассматриваются, и для ознакомления с ними следует обратиться к курсам физической металлургии ). В дальнейшем о них будет сказано лишь очень кратко.  [c.56]


Основная масса металлов применяется в промышленности в виде сплавов. Это объясняется более высокими механическими свойствами сплавов. Из чистых металлов практически невозможно изготовить детали машин, так как прочность их на порядок меньше, чем прочность сплавов на их основе. Поэтому чистые металлы применяются только в тех случаях, когда требуются их другие физические свойства (электропроводность, теплопроводность, химическая устойчивость, способность поглощать или пропускать нейтроны и т.д.).  [c.42]

Физические свойства окисной пленки играют важную роль в процессах окисления металлов и сплавов. При этом большое значение имеет прочность сцепления окислов с металлом и сплошность покрытия поверхности образцов окисной пленкой. Алюминий, кремний и хром, входящие в состав чугуна, в зависимости от их содержания способствуют образованию окислов железа — типа шпинели или образуют чистые окислы на собственной основе, имеющие плотноупакованную кристаллическую решетку и обладающие высокой жаростойкостью. Первоначально образовавшиеся на поверхности изделий окислы алюминия, хрома и кремния, практически не претер певают изменений и надежно предохраняют металл от последующего окисления при высоких температурах.  [c.197]

Физические и механические свойства переходных металлов. Энергия межатомных связей, определяющая в конечном итоге технические показатели высокой прочности и жаропрочности тугоплавких металлов и сплавов на их основе кратковременную аь и длительную 01ООЧ прочность, предел текучести Стт или Сто,а. а равно и характеристики пластичности и вязкости — относительное удлинение б, сужение ij), ударную вязкость а , скорость ползучести е и т. д.,— может быть характеризована основными термодинамическими свойствами этих металлов [70].  [c.40]

Физические свойства титана указаны в табл. 3. Поскольку механические свойства зависят от чистоты металла, то промышленность выпускает ряд сортов титана. Эти сорта титана и их обозначения (наименования), а также их механические свойства приведены в табл. 4 и 5. Неодинаковая прочность сортов титана может быть отнесена главнымобразом насчет различного содержания в металле таких примесей, как кислород, азот и углерод. Механические свойства титана, как и большинства других элементов, можно значительно изменять легированием, причем многие сплавы на основе титана уже производятся в промышленном масштабе. В табл. С приводятся наименования титановых сплавов с указанием производящих их фирм. Свойства этих сплавов приведены в табл. 7. Весьма важно, что легированием можно значительно повысить их прочность при незначительной потере пластичности. Прочность многих титановых сплавов может быть дополнительно увеличена путем их термообработки, которая описана в последнем разделе это( 1 главы.  [c.764]

Особо твердые инструментальные материалы созданы на основе нитрида бора и нитрида кремния. В них нет пластичной металлической связки. Изделия из этих материалов изготавливают либо с помощью взрыва, либо в условиях сверхвысоких статических давлений и высоких температур. Изделия из нитридов бора и кремния используют в качестве материала иденторов (наконечников) для измерения твердости тугоплавких материалов в интервале температур 700—1800 °С, как абразивный материал и в качестве сырья для изготовления сверхтвердых материалов, применяемых для оснащения режущей части инструментов для обработки закаленных сталей, твердых сплавов, стеклопластиков, цветных металлов. Они обладают высокой твердостью HRA 94—96), прочностью, износостойкостью, теплопроводностью, высокой стабильностью физических свойств и структуры при повышении температуры до 1000 °С. Их преимуществом является доступность и дешевизна исходного продукта, благодаря чему они используются для замены вольфрамсодержащих твердых сплавов.  [c.204]


Смотреть страницы где упоминается термин Физические основы прочности металлов и сплавов : [c.3]    [c.152]    [c.764]   
Смотреть главы в:

Сопротивление материалов  -> Физические основы прочности металлов и сплавов



ПОИСК



49 Физические основы

Металлы и сплавы Металлы

Прочность металлов

Сплавы металлов

Сплавы на основе



© 2025 Mash-xxl.info Реклама на сайте