Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вторая теорема существования и её применения

Вторая теорема существования и её применения  [c.223]

Предлагаемая книга посвящена применению методов потенциала к основным граничным задачам теории упругости. Исследования на эту тему занимали автора и раньше [13 а, г, е], но настоящая работа отличается от прежних тем, что в ней впервые, наряду с однородными телами, рассматриваются также кусочно-неоднородные и доказываются теоремы существования для основных граничных задач таких тел. Второй особенностью книги является построение всей теории граничных задач на базе теории сингулярных интегральных уравнений. Это позволило, с одной стороны, расширить круг исследуемых граничных задач (контактные задачи, смешанные задачи) и, с другой стороны, обнаружить новые возможности метода При точном и приближенном решении многих задач Наконец, третья особенность книги заключается в том, что в ней впервые излагаются два новых способа приближенного решения граничных задач.  [c.7]


Рассматривая методы А. М. Ляпунова, следует признать, что второй метод имеет большую общность, чем первый. В частности, теоремы I и II, доказанные первым методом, можно доказать, применяя второй метод А. М. Ляпунова. Затруднения, возникающие при применении второго метода, зависят от отсутствия известных правил, которые позволили бы в конкретных задачах строить функции V А. М. Ляпунова. Сам А. М. Ляпунов не рассматривал вопрос об общих методах построения функции V в различных задачах механики. Эти затруднения в настоящее время в значительной степени преодолены ). Начиная примерно с тридцатых годов XX в. появился также ряд исследований о существовании функций А. М. Ляпунова для определенных классов задач.  [c.346]

В.И. Плотников и В.И. Сумин [89] в 1968 г. предложили рассматривать решения тех же задач в классе функций, имеющих обобщенные производные, и доказали необходимые теоремы существования (см. 86-90]). О.В. Васильев с учениками [16, 17], М.Я. Ягубов [119] и другие авторы исследовали необходимые условия второго порядка и особые управления. В.А. Срочко с учениками рассматривали применение условий оптимальности в форме принципа максимума для построения приближенных решений [17, 102]. Е.П. Бокмельдер и В.А. Дыхта [10 использовали идеи метода г -вариаций А.Я. Дубовицкого и A.A. Милютина [30] для получения необходимых условий оптимальности.  [c.10]

Теоремы существования. До сих пор основой всех наших рассуждений служила предпосылка, что основные уравнения теории упругости в действительности имеют решения для различных возможных граничных условий. Вопрос о существовании решений — самый трудный вопрос теории упругости для своего решения он требует применения серьезных математических вспомогательных приемов. Поэтому здесь речь может итти только о том, чтобы крагко охаректеризовать ход рассуждений в доказательствах существования, например при заданных перемещениях на поверхности чго же касается дальнейших подробностей вопроса, то мы принуждены отослать читателя к специальной литературе. Мы вкратце изложим два доказательства существования. Во-первых, доказательство Корна, которое заслуживает внимания как по своему методу, так и в силу исторических соображений Корн был первый, которому принадлежит последовательное рассмотрение интересующего нас вопроса существования. Во-вторых, доказательство Лихтенштейна, отличающееся особенно простым ходом рассуждений.  [c.139]

Производных Фреше, теорему о неявной функции и другие теоремы из функционального анализа, многие из которых приведены с полными доказательствами. Во второй главе дан вывод основных уравнений и граничных условий статической теории упругости. В последующих главах этой части обсуждается структура системы уравнений теории упругости, её зависимость от свойств упругого материала. Часть В под названием Математические методы трёхмерной теории упругости посвящена в основном доказательству теорем существования решений краевых задач нелинейной системы теории упругости. В этой части две главы. В первой даны доказательства теорем существования, основанные на применении теоремы о неявной функции, получены оценки отклонения решения от соответствующего решения линейной задачи, доказана сходимость метода приращений. Во второй главе теоремы существования установлены вариационным методом, на основе минимизации энергии, приведены доказательства замечательных теорем Болла о существовании решений.  [c.6]



Смотреть страницы где упоминается термин Вторая теорема существования и её применения : [c.444]   
Смотреть главы в:

Вопросы современной начертательной геометрии  -> Вторая теорема существования и её применения



ПОИСК



Вторая теорема

Существование

Теорема существования



© 2025 Mash-xxl.info Реклама на сайте