Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оптические модели газовой атмосферы

В гл. 1 кратко обобщаются сведения об основных эффектах физического взаимодействия, сопровождающих процесс распространения оптического излучения в атмосфере, приводятся формулы расчета и табличные данные, касающиеся характеристик когерентного и некогерентного рассеяния. В гл. 2 обосновывается статистически обусловленная микрофизическая модель аэрозоля анализируются экспериментальные данные по изучению микроструктуры аэрозоля и его вертикальной стратификации. В гл. 3 систематизированы новые данные, касающиеся адекватного выбора исходных оптических постоянных аэрозольного вещества. В гл. 4 представлены оригинальные результаты количественного анализа критериев точности расчетного прогноза оптических параметров аэрозоля. В гл. 5 приведены и проанализированы таблицы высотного распределения основных оптических параметров аэрозоля проведены сопоставления предложенных моделей с известными результатами оптического зондирования. В гл. 6 и 7 рассмотрены вопросы построения оптических моделей газовой атмосферы для широкополосных и селективных источников излучения приведены результаты расчетов, выполненных на основании уточненных метеорологических моделей и оригинальных алгоритмов, даны рекомендации по практическому использованию развитых моделей для дистанционного зондирования атмосферы.  [c.6]


ГЛАВА 7. ОПТИЧЕСКИЕ МОДЕЛИ ГАЗОВОЙ АТМОСФЕРЫ  [c.208]

В данной главе последовательно излагаются принципиальные основы оптических моделей газовой атмосферы с учетом их построения для решения разнообразных прикладных задач. Приводятся конкретные модели как иллюстрация возможности их построения.  [c.208]

Примеры оптических моделей газовой атмосферы  [c.225]

Специфические особенности явления молекулярного поглоще-ния оптического излучения газовой атмосферой, связанные прежде всего с резко выраженной спектральной селективностью коэффициентов поглощения, обусловливают высокие требования к проблеме создания соответствующих надежных оптических моделей атмосферы, естественно зависящие от тех задач, для которых эти модели создаются.  [c.208]

В монографиях предлагаемой серии будет дано описание земной атмосферы как физической газовой среды, будут рассмотрены закономерности, связанные с атмосферой как дисперсной средой и описаны новые оптические модели атмосферы изложены проблемы спектроскопии атмосферы, оптики атмосферного аэро-  [c.5]

Первый том указанной серии Статистические модели температуры и газовых компонент атмосферы посвящен последовательному изложению основных результатов многолетних исследований по проблеме физико-статистического анализа и моделирования высотного распределения температуры и газового состава атмосферы. При этом основное внимание уделено таким оптически активным газовым составляющим атмосферы, как водяной пар и озон. Подробно обсуждены также современные данные о высотном распределении и других оптически активных газов (СО2, СО, СН4, N20, N02, N0) и проведено их статистическое обобщение.  [c.6]

Монография посвящена последовательному изложению проблемы построения оптической модели атмосферы на основе привлечения статистически обеспеченных данных о ее составе. Анализ проблемы приведен как для дисперсных сред (дымки, облака, туманы, осадки) с учетом характерных особенностей их микрофизической структуры (концентрации, спектра размеров частиц, коэффициентов преломления материала), так и газовых компонент атмосферы на основе современных представлений о их высотных вариациях в атмосфере.  [c.4]

Общие линии поглощения в спектрах атмосферных газов вместе с их индивидуальной зависимостью от макрофизических параметров среды (общего, парциальных давлений и температуры), в свою очередь изменяющихся в широких пределах от широты, долготы, высоты и времени, делают задачу количественного определения энергетических потерь оптической волны за счет поглощения газами атмосферы исключительно сложной. Соответственно сложной является и задача создания оптических моделей газовой атмосферы. Ее подробное описание содержится в гл. 6 и 7 настоящей монографии.  [c.8]


Поглощение оптического излучения молекулярными газами атмосферы является одним из основных постоянных факторов, влияющих на распространение световых пучков. Информация о спектрах поглощения и характеристиках отдельных спектральных линий, закономерностях их изменения при вариации метеопараметров, состава газа и характеристик лазерного излучения служит основой для решения целого ряда прикладных задач. В настоящей главе будут рассмотрены основные направления приложения спектроскопической информации, связанные с оценками энергетических потерь широкополосного и узкополосного (лазерного) излучения на атмосферных трассах, построением высотных оптических моделей молекулярной атмосферы созданием автоматизированных диалоговых систем для изучения эффектов распространения в условиях поглощающей атмосферы, локальным и дистанционным анализом газового состава атмосферы.  [c.185]

В табл. 8.5—8.8 показан высотный ход коэффициентов объемного поглощения воздуха х для монохроматического излучения с длиной волны 10,6 мкм соответствующие значения оптической толщи т и пропускания Т вертикальной трассы для четырех типов среднеширотных моделей газовой атмосферы, разработанных в ИОА СО АН СССР [13]. Здесь же приведены данные по величине среднеквадратических отклонений для х, т, 7, обозначенные  [c.208]

При решении задач, связанных с проблемой переноса оптической радиации в атмосфере, обычно используются различные справочные модели высотного распределения давления, температуры, влажности воздуха и озона (см., например, [1.59, 1.69, 5, 59, 101]). Это связано с тем, что наиболее распространенные, так называемые стандартные атмосферы (СА)—СА-73 [1.9] в СССР и СА-76 [102] в США содержат только данные о среднегодовом и среднеглобальном распределении давления, температуры и плотности воздуха по высоте и не дают совершенно никакой информации о содержании в нем оптически активных газовых составляющих (в первую очередь, водяного пара и атмосферного озона). Справочные модели (наиболее известной из них является модель Мак-Клатчи [59]) дают наглядное представление о вертикальном среднесезонном распределении физических параметров в различных широтных зонах земного шара полярной (60—90° ш.), умеренной (30—60° ш.) и тропической (О—30° ш.). Кроме того, они содержат данные о высотных профилях таких МГС, как Н2О и О3.  [c.162]

Y ( 0 — частота центра линии поглощения, Vл — частота ЛИ) также важен учет сдвига центра линии поглощения давлением. Однако при решении задач атмосферного распространения, построении оптических моделей атмосферы,, оценках погрешностей спектроскопических методов зондирования газового состава этим фактором, как правило, пренебрегали. Причиной этого является недостаток информации о значениях коэффициентов сдвига центров колебательно-вращательных линий молекул атмосферных газов. В [9] приведены результаты измерения коэффициента самосдвига для линии азН (О, 0) полосы V2 аммиака, который втрое меньше коэффициента самоуширения для той же линии и равен (0,10 0,003) см атм Коэффициент сдвига центра линии СН4 3,39 мкм давлением воздуха составляет величину на порядок меньше [2]. Лишь недавно, в описанных в предыдущей главе экспериментах, выполненных на внутрирезонаторном и оптико-акустическом [39] спектрометрах, были измерены коэффициенты сдвига центров линий основного поглощающего газа атмосферы— паров Н2О — в видимом и ближнем ИК-диапазоне спектра давлением воздуха. В [39] сделаны оценки систематических погрешностей, возникающих при решении обратной задачи дистанционного зондирования газового состава и расчетах атмосферного пропускания, обусловленные неучетом этого эффекта. Кратко остановимся на этом вопросе.  [c.198]

Первое из них связано с учетом достаточно тонких и пока еще недостаточно изученных в количественном плане эффектов трансформации контуров отдельных и перекрывающихся спектральных линий давлением воздуха (сдвиг, интерференция перекрывающихся линий, специфика уширения при переходе от столкновительного к доплеровскому контуру). Второе направление связано с накоплением и статистической обработкой информации о временных флуктуациях метеопараметров и концентраций поглощающих газов по вертикальной и наклонным трассам, а также с уточнением профилей концентраций малых газовых примесей ц короткоживущих компонентов молекулярной атмосферы (например, продукты химических реакций в озонном слое). Успешное решение этого вопроса требует накопления данных лидарных измерений газового состава атмосферы и расширения арсенала спектроскопических методов атмосферной оптики, использующих лазеры с управляемыми спектральными характеристиками. И, наконец, новым, практически не затронутым в научной литературе вопросом является вопрос разработки оптических моделей нелинейно поглощающей атмосферы. Его возникновение связано с увеличением энергии и мощности современных лазеров, применяющихся для исследований атмосферы, до уровней появления нелинейных спектроскопических эффектов.  [c.214]


Углекислый газ и малые газовые составляющие. В отличие от основных оптически активных газов (Н2О и О3), содержание которых регулярно измеряется на мировой сети станций, при построении среднезональных моделей высотного распределения СО2, СО, СН4, N20 N02 и N0 в качестве исходного материала использованы только отдельные, хотя и достаточно многочисленные данные специальных наблюдений за газовым составом атмосферного воздуха. Подобные данные, получаемые в последние годы для различных уровней атмосферы, разных сезонов и районов земного шара, публикуются регулярно. Приведенные в них сведения о концентрации малых газовых примесей в тропосфере и стратосфере находятся в хорошем качественном (и количественном) соответствии и дополняют друг друга. Хотя количественная интерпретация опубликованных данных затруднена (из-за различия методов измерения газовых примесей и разной точности определения их концентрации), мы провели их систематизацию и после тщательного физического анализа использовали для статистического обобщения.  [c.167]


Смотреть главы в:

Атмосферная оптика Т.2  -> Оптические модели газовой атмосферы



ПОИСК



Атмосфера

Модель атмосферы

Модель атмосферы оптическая

Оптическая модель

Твд атмосферы оптическая



© 2025 Mash-xxl.info Реклама на сайте