Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Периодические решения, полученные методом Пуанкаре

Так ii в (38) следует считать функцией Ф, г з, i, определяемой соотношением (37). Периодические решения системы (38) могут быть найдены методом Пуанкаре В первом приближении получаются выражения для законов изменения во времени искомых переменных  [c.207]

Отметим, что метод Пуанкаре позволяет получить лишь те периодические решения основной системы (2.1), которые обращаются при ц = О в порождающее решение (2.3). В принципе основная система может иметь и Иные периодические решения.  [c.159]


Классы а) и б) периодических орбит были в первом приближении получены без использования методов Ляпунова и Пуанкаре отыскания периодических решений и были известны задолго до Ляпунова п Пуанкаре.  [c.539]

Начала широкому использованию метода Пуанкаре было положено в тридцатых годах текущего столетия работами Л. И. Мандельштама, Н. Д. Папалекси, А. А. Андронова и А. А. Витта. Несмотря на то, что эти исследования были посвящены преимущественно радиотехническим проблемам, обнаруженные в их ходе нелинейные явления (мягкое и жесткое возбуждение колебаний, резонанс п-го рода, затягивание и захватывание) носят универсальный характер. Суш,ественное значение, имела также работа Б. В. Булгакова (1942 г.) о колебаниях квазилинейных систем. Значительное развитие метод Пуанкаре получил в исследованиях И. Г Малкина (1944— 1956 гг.), который впервые систематически рассмотрел важный для приложений случай зависимости порождающего решения от произвольного числа параметров ау, обобщив результаты Пуанкаре, изучившего случай зависимости лишь от одного параметра. И. Г. Малкиным получены уравнения типа (50) и (59) для периодических и почтн-периоднческих решеннй квазилинейных и сильно нелинейных систем уравнений как с аналитическими, так и с неаналитическими правыми частями. Кроме того, изучен важный класс нелинейных систем, близких к так называемым системам А. М. Ляпунова решение уравнений (41) в этом случае может представляться рядами по дробным степеням параметра х. В работе Г. А. Мермана (1952 г.) изучен особый случай, когда уравнения типа (50) или (59) удовлетворяются тождественно, так что определитель вида (51) обращается в нуль показано, что в этом случае параметры порождающего решения следует пытаться найти из условий периодичности следующих приближений.  [c.64]

Известно, какое большое значение во многих случаях имеет метод малого параметра Пуанкаре ). В наши дни методом малого параметра были получены почти-периодические решения Г. И. Бирюк, И. Г. Малкиным, В. X. Харасахалом, Г. В. Плотниковой, А. П. Проскуряковым и другими. В работах И. 3. Штокало (1946, 1960), А. Е. Гельмана (1965), И, Н. Блинова (1965) были получены квазипериодические решения линейных систем дифференциальных уравнений. Многие вопросы устойчивости и периодических решений рассматривались П. Б. Голоквосчусом.  [c.81]

Вводные замечания. Задача трех или большего числа тел считается по справедливости одной из самых знаменитых проблем в математике. Тем не менее, до недавнего времени весь интерес в этой проблеме был направлен на формальную сторону вопроса и в частности на формальное решение посредством рядов. Пуанкаре был первым, получившим блестящие качественные результаты, касающиеся в особенности специального предельного случая так называемой ограниченной проблемы трех тел , рассмотренной впервые Хиллом. Что касается общей проблемы, то главные результаты, полученные Пуанкаре, следующие во-первых, он установил существование различных типов периодических движений методом аналитического продолжения во-вторых, он показал, что в силу самой структуры дифференциальных уравнений проблемы тригономстричсскис ряды могут быть полезными, и, наконец, в-третьих, он указал на пригодность этих рядов, как асимптотических. Все эти результаты остаются справедливыми не только для проблемы трех тел, но и для всякой гамильтоновой системы. К несчастью, в его исследованиях всегда имеется вспомогательный параметр //, причем при /X = О система будет специального интегрируемого типа. Таким образом, возникающие трудности (по крайней мере, отчасти) более зависят от особой природы интегрируемого предельного случая (когда два из трех тел имеют массу 0), чем присущи самой проблеме.  [c.259]


Методы Пуанкаре получили многочисленные приложения в задаче трех тел. Шварцшильд доказал [12] существование периодических решений в ограниченной круговой задаче трех тел, периоды которых в общем случае несоизмеримы с периодом порождающего решения. Эти периодические решения вырождаются при (1 = О во вращающиеся эллипсы вокруг центрального тела (периодические решения с вращающейся линией апсид). Следует также сказать о работе Цейпеля [13], содержащей детальное исследование периодических решений третьего сорта, о книге К. Зигеля [6], в которой доказывается существование периодических решений гамильтоновых систем, когда матрица линеаризованной части имеет пару чисто мнимых собственных значений, Г. А. Мермана [14], в которой приведены новые четырехпараметрические множества периодических решений в огра-  [c.794]

Желание многих астрономов построить теории движения небесных тел в тригонометрической форме , подразумевая под этим представление позиционных переменных (большие полуоси, эксцентриситеты, наклоны и их аналоги) в виде сумм периодических функций времени, а угловых переменных (долготы, аномалии и их аналоги) —в виде сумм линейных функций времени и сумм периодических функций, привело к разработке общего метода построения решений канонических систем с периодическим по угловым переменным и аналитическим по ц гамильтонианом, названного Пуанкаре методом Линдщтедта [2]. Начало этого направления было положено Лапласом, а завер-щенное развитие его мы получили благодаря Пуанкаре.  [c.824]

В предельном случае р = О, 5 = О получаются решения Хилла, которые были выведены в предыдущем параграфе, где рассмотрение рекуррентных формул для коэффициентов было более простым, потому что вместо I входило 21 и отсутствовала особенность при I = 1. При ( = ОиО<р<1 получаем ограниченную задачу трех тел, в которой масса Лупы равна пулю. Для этого случая периодическое решение было найдено Брауном [2] по методу Хилла. Полученное памп общее решение было найдено Мультопом другим способом, а имеппо, с помощью метода малого параметра Пуанкаре. Этому методу посвящен следующий параграф.  [c.185]

Ряды (11.23)-( 11.25) подставляются в уравнение (11.20), после чего приравниваются члены при одинаковых степенях параметра ц. В результате получается совокупность рекуррентных линейных неоднородных дифференциальных уравнений с постоянными коэффициентами. Из этих уравнений определяются функции Х2(0), Хз(0), а из условий их периодичности находятся коэффициенты 82,02,84,04 и т.д., причем для отыскания каждой пары коэффициентов 8 , получаются линейные алгебраические уравнения. Конкретно, равенство коэффициентов при jj, удовлетворяется тождественно приравнивание коэффициентов при дает линейное неоднородное уравнение для Х , откуда и находится функция х = Xji ) как периодическое решение этого уравнения. Затем приравниваются коэффициенты при и получается уравнение для Ху Требование периодичности решения лГз(0) приводит к алгебраическим уравнениям для 82 и СТ2, определив которые, находим лГз(0), после чего составляем уравнение для 4(0), приравнивая коэффициенты при ц и т.д. В общих чфтах здесь повторяются выкладки и рассуждения, характерные для метода Пуанкаре. Детали станут ясными из примера в 11.3.  [c.229]


Смотреть главы в:

Справочное руководство по небесной механике и астродинамике Изд.2  -> Периодические решения, полученные методом Пуанкаре



ПОИСК



Метод Пуанкаре

Получить, метод

Пуанкаре

Решение периодическое

Решения метод



© 2025 Mash-xxl.info Реклама на сайте