Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теоретические основы разрушения поверхностей

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАЗРУШЕНИЯ ПОВЕРХНОСТЕЙ  [c.143]

Разрабатываемый теоретико-инвариантный метод позволит получить расчетные уравнения, имеющие определенную физическую информативность, раскрывающие качественное и количественное влияние действующих факторов физической, химической и механической природы при поверхностном разрушении твердых тел. Дальнейшая задача заключается в обобщении экспериментальных данных и поиске новых информативных критериальных структур на основе экспериментальных и теоретических исследований свойств поверхности на микро- и макроуровнях.  [c.201]


Теоретической основой процесса приработки являются закономерности трансформации исходного качества поверхности в ее рабочее состояние. Эта транс юрмация завершается стационарным процессом динамического равновесия образования и разрушения вторичных защитных структур, характеризующих нормальное трение. Механизмы трансформации и динамического равновесия описаны в гл. II и XIV.  [c.374]

Подробно изучен механизм, от которого зависит повышение вязкости термопластов, и, согласно [41, 42, 60], главные особенности их поведения такие же, как и для хрупких полимеров. Основа этого явления состоит в том, что эластомерная фаза приводит к увеличению молекулярной ориентации, которая происходит в объеме полимерной матрицы, окружающем частицы эластомера. В исследованиях [3, 4, 8] показано, что на поверхностях разрушения термопластов встречается существенная молекулярная ориентация. Предполагается, что в этом случае для развития начальной трещины требуется наибольшая затрата работы, и это также объясняет большое различив (на три-четыре порядка) между анергией разрушения и оцененной теоретически поверхностной энергией для этих материалов.  [c.27]

На этой основе в предложенной теории удается учесть эво ЛЮЦИЮ поверхностей текучести и в ограниченной степени влияние деформаций на условия равновесия. Вышеупомянутая кусочно-линейная аппроксимация первых и использование линеаризованных уравнений равновесия (эффекты второго по-рядка ) для учета влияния последних представляются гипотезами, которые, несмотря нй свою ограниченность, не лишают достигнутые результаты прикладного значения. Естественно, что теоретический коэффициент запаса s (по разрушению вследствие неограниченного пластического течения) во многих случаях может оказываться бесконечным вследствие упрочнения или стабилизирующих геометрических эффектов. Следовательно, реалистическая оценка безопасности должна основываться (как это часто делается при конечных значениях s и в классической постановке) на определении в условиях приспособляемости тех значений (или хотя бы порядка величии), которые принимают локальные характеристики прежде всего наиболее существенные перемещения и пластические деформации в определяющих областях объекта. Однако эти значения зависят от истории нагружения, которая, как правило, неизвестна, за исключением лишь интервалов изменения нагрузок, Поэтому обращение к оценкам сверху представляется важным и часто неизбежным. В данной работе приведены некоторые процедуры получения верхних оценок, но их практическая ценность и относительные достоинства должны еще быть определены из опыта вычислений. Эта задача, как и дальнейшее развитие теории, подлежит рассмотрению в будущем. Связь с предшествовавшими трудами отмечается в тексте чаще всего тогда, когда из полученных новых результатов определяются частные случаи.  [c.76]


Более сложный теоретический подход предполагает оценку механизма разрушения по поверхности раздела и влияния последней на прочность композита при внеосном нагружении на основе свойств поверхности раздела. Эта ситуация много сложнее, и попытки такого рода предпринимались лишь для случая нагруже--ния в направлении, перпендикулярном волокнам. Поскольку здесь предполагается, что разрушение по поверхности раздела хотя бы  [c.186]

Таким образом, теория прочности композитов при внеосном растягивающем нагружении развита для случаев, когда либо разрушение происходит не по поверхности раздела, либо разрушение по поверхности раздела учитывается лишь косвенно. При решении более сложной задачи — прямого анализа влияния поверхности раздела на прочность при внеосном нагружении — достигнуто меньше успехов, хотя определенные возможности представляет метод конечных элементов [1]. С помощью теорий, рассматривающих непосредственно поверхность раздела, были предсказаны разумные величины верхнего и нижнего предельных значений поперечной прочности, однако они пока не подтверждены экспериментально. Задача разработки более соверщенного подхода, который позволил бы количественно оценить влияние поверхности раздела на прочность при внеосном нагружении, пока не решена. Ряд проблем возникает из-за трудностей экспериментального определения важных характеристик поверхности раздела, другая группа проблем — из-за того, что неясно, как на основе экспериментальных значений данных характеристик предсказать прочность композита. Это — сложные проблемы драктического и теоретического характера, однако начало их решению может быть положено определением характеристик композита при внеосном растяжении и исследованием разрушенных образцов, что позволяет установить роль поверхности раздела в разрушении композита при растяжении. Результаты ряда таких исследований рассмотрены ниже.  [c.203]

Заканчивая краткий обзор теоретических представлений о механизме КР, можно заключить, что хотя еще не создана единая теория КР, большинство случаев КР в электролитах можно объяснить на основе механо-электрохимических представлений. В начальный период основную роль в возникновении первичной трещины играет хемосорбционное взаимодействие активных ионов среды на каких-то отдельных неоднородностях поверхности металла. Дальнейшее развитие трещины идет при непрерывном возрастающем влиянии активации анодного процесса механическим растяжением решетки в зоне острия трещины. Эта активация особенно велика, если исходное состояние металла соответствует пассивному состоянию, а наложение растягивающих усилий приводит к местной активации в вершине трещины. В конечный период нарастают механические разрушения и разрыв происходит при превалировании механического фактора.  [c.68]

Тепловые испытания многослойных сосудов показали, что перепад температуры по толщине стенки в многослойных сосудах больше, чем в однослойных, вследствие особенностей контактного теплообмена на поверхностях соприкосновения слоев [20]. В результате экспериментальных исследований была установлена нелинейная зависимость контактных температурных сопротивлений в многослойном пакете от контактного давления [21]. На основе полученных зависимостей разработаны методы расчета теплового поля и температурных напряжений в многослойном цилиндре [22, 23] и в зоне кольцевого шва [24]. Описано качественно новое явление — зависимость поля температур от напряженного состояния многослойной стенки и, в частности, перепада температуры по толщине стенки от внутреннего давления (рис. 3). С учетом контактной теплопроводности решена также задача нахождения нестационарного темнератур-ного поля при внутреннем и наружном обогреве [251. Теоретические расчеты проверялись экспериментами на малых моделях [26], в том числе тепловыми испытаниями в специальном защитном кожухе. В настоящее время институт располагает защитным сосудом объемом 8 м , рассчитанным на пневматическое разрушение в нем экспериментальных сосудов.  [c.264]


Таким образом, физическая природа интенсификации микропластичес-кого течения в поверхностных слоях материалов и последующего усталостного разрушения при циклических нагрузках должна рассматриваться именно с указанных позиций. При этом следует отметить, что необратимое действие вакансионного насоса при циклировании, создающего спектр приповерхностных источников дислокаций и вызывающего их переползание, обеспечивается не только созданием периодического пересыщения при цикле сжатия и существующим недосыщением на стоках [601, 602], но и различием потенциальных энергетических барьеров на источниках и стоках точечных дефектов, непосредственно на поверхности и в более удаленных от поверхности приповерхностных слоях. Поэтому полученные в главе 7 результаты представляют основу для дальнейшего развития как теоретических, так и экспериментальных исследований в области изучения основных закономерностей эволюции дислокационной структуры при испытаниях на длительную и циклическую прочность и физической природы усталости металлических и неметаллических материалов в различном диапазоне напряжений и температур. Наконец, учитывая результаты работы [586], следует также весьма осторожно относиться к интерпретации низкотемпературных пиков внутреннего трения и помнить, что они могут появиться в ряде случаев именно в силу проявления методических особенностей способа нагружения (использование циклических изгибных или крутильных колебаний с максимальной величиной напряжений вблизи свободной поверхности и присутствием градиента напряжений по сечению кристалла).  [c.258]

ВИДЫ оружия анализируют лишь номинально, причем особое значение придают использованию опытных коэффициентов безопасности, а также проведению испытаний прототипа на выносливость. При проектировании других видов оружия проводят детальный расчет на основе теоретических и экспериментальных данных, чтобы получить совершенную конструкцию прототипа для испытания ее на выносливость. Руководяш,ие материалы по усталостной прочности отражают обилий уровень знаний в области усталостного разрушения. В настоящее время еш е остаются вопросы теоретические и феноменологические, для решения которых недостаточно знаний, например, о влиянии на усталость материала таких факторов, как поле напряжений, остаточные напряжения, масштабный фактор, обработка и состояние поверхности, а также качество материала. Последний обзор теоретических положений и методов, относяш ихся к накапливаемому повреждению (Хардат,  [c.319]

Предшествующие эксперименты [1,3] показали, что ускорение хрупкой трещины, начавшейся из краевого надреза в пластине, монотонно нагружаемой вплоть до разрушения одноосным растяжением, согласуется с теоретическими расчетами Мотта [4] и Берри [5]. В этих экспериментах измерения выполнялись главным образом на полиметилметакрилате (ПММА) при помощи нанесенной на поверхность сетки. Такие данные могут быть представлены либо в виде распределения средней скорости трещины между соседними полосами сетки, либо в виде точно произведенных измерений времени н длины трещины, интерпретированных на основе итерационного метода с использованием интегральной формы уравнения Берри [3, 5]. Последнее позволяет точно оценить предельную скорость трешлны и отношение действующих напряжений в образце к разрушающим напряжениям по Гриффитсу.  [c.173]

К сожалению, рассматриваемые теории описывают разрушение лишь таких материалов, прочность которых целиком определяется их локальной прочностью. Расхождение между результатами теоретических расчетов и данными опытов, проведенных на ряде материалов, объясняется, по-видимому, несоответствием свойств реальных тел и свойств идеально хрупкой модели, положенной в основу теории. В реальных телах не выполняется одно из главных условий, лежащих в основе статистической теории хрупкого разрушения локальная прочность определяет прочность всего тела. В действительности благодаря наличию в материале микропласти-ческих деформаций локальные пики напряжений перераспределяются и не влекут за собой разрушение тела. Кроме того, степень опасности дефектных элементов одинаковой прочности зависит от их координат [35]. На стекле, например, обнаружено [19], что масштабный эффект зависит не только от объема образца, но и от площади его поверхности, т. е. одинаковые дефекты не являются одинаково опасными. Эти теории не связывают разрушение со структурными изменениями в материале, вызванными пластической деформацией, которая, по данным работы [478], всегда предшествует разрушению.  [c.131]

Данные по динамике удара играют важную роль при построении моделей эрозии [1]. Несмотря на изменения топографии поверхности в процессе ес разрушения, именно случай соударения с плоской исходной поверхностью положен в основу теоретического анализа лрозии. Обобгцония расчетных и экспериментальных данных по соударению твердых частиц с однородными и неоднородными преградами даны, папример. в [1, 18,  [c.187]


Смотреть страницы где упоминается термин Теоретические основы разрушения поверхностей : [c.170]    [c.168]    [c.407]    [c.412]    [c.73]    [c.237]    [c.221]   
Смотреть главы в:

Трение износ и смазка Трибология и триботехника  -> Теоретические основы разрушения поверхностей



ПОИСК



Поверхность разрушения

Теоретические основы



© 2025 Mash-xxl.info Реклама на сайте