Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рефракция звуковых лучей

Рефракция звуковых лучей. Скорость звука в море зависит от температуры, давления и солёности воды. Эта зависимость в интервале температур от 6 до 17° С даётся следующей найденной из опытов формулой  [c.314]

К естественным волноводам (их часто называют каналами) относят различные слоистые среды, ограниченные поверхностями, имеющими большую отражательную способность для звуковых волн. Это моря и океаны, для которых верхней границей является воздух, а нижней— донные отложения. Кроме того, в природе встречаются также волноводы, в которых границы выражены не резко. Эти волноводы образуются в толще атмосферы, а также в море за счет особого распределения значений скорости звука с высотой. При некоторых условиях температура воды и соленость изменяются с высотой так, что на некоторой глубине фазовая скорость имеет минимальное числовое значение. На уровнях, лежащих выше и ниже поверхности с минимумом скорости, среда акустически неоднородна скорость звука с увеличением расстояния от этого уровня увеличивается. В связи с этим звуковые лучи, проходящие через поверхность минимума скорости звука, испытывают рефракцию, в результате чего периодически искривляются.  [c.319]


Например, в обычных метеорологических условиях температура воздуха, а вместе с ней и скорость звука уменьшаются снизу вверх. Поэтому звуковые лучи изгибаются кверху, в результате чего слышимость на земле быстро убывает при удалении от источника звука (рис. 91.2, а). При аномальном распределении температур, например в ясную ночь, когда земная поверх- ность выхолаживается в результате излучения тепла, а вместе с ней охлаждаются и нижние слои воздуха, температура растет снизу вверх ( температурная инверсия ) и лучи изгибаются книзу слышимость на далеком расстоянии улучшается (рис. 91.2, б). Таким образом, слышимость далеких источников шума улучшается ночью не только потому, что меньше посторонних близких шумов, но и в результате рефракции.  [c.300]

Акустооптич. рефракция — изменение хода световых лучей в неоднородно деформированной среде (рис. 1) — возникает, если поперечный размер светового пучка d значительно меньше длины звуковой волны, т. е. d А. Световой луч, падающий нормально, после прохождения звукового пучка толщиной D отклоняется от своего первоначального направления на угол Р, пропорциональный длине пути светового луча в звуковом поле L D и градиенту показателя преломления п. В случае бегущей УЗ-вой волны угол отклонения меняется во времени с частотой звука по закону  [c.32]

Но особенно полезна картина лучей при изучении звукового поля точечного источника в неоднородной среде. Ограничимся для простоты и здесь случаем слоисто-неоднородной среды. Если изменение свойств среды мало на расстоянии длины волны, то можно по-прежнему пользоваться картиной рефракции лучей согласно формуле  [c.300]

Другое важное явление, связанное с рефракцией, — это распространение сейсмических волн, т. е. звуковых волн в Земле (такие волны вызываются землетрясениями, подземными взрывами и т. п.). Скорость звука в горных породах растет с увеличе нием глубины. Поэтому сейсмические лучи, загибаясь, возвращаются к поверхности, отражаются от нее, снова загибаются и т. д., так что значительная часть сейсмической энергии оказы-  [c.300]

Наверное, каждый из нас имел возможность убедиться в том, что по ветру звук слышен лучш-е, чем против ветра. Не следует думать, что когда звуковая волна движется против ветра, то ветер мешает ее распространению, а когда звук распространяется по ветру, он помогает ей. Объяснение этому явлению мы находим в преломлении, или рефракции звуковых лучей.  [c.222]

Стратификация атмосферы по темгг-ре, а также по скорости ветра может привести к тому, что наклонные звуковые лучи от наземного источника звука будут благодаря рефракции загибаться обратно к земной поверхности, отражаться от неё иод тем же углом и т. д., т. е, образуется атм, волновод акустический. Это возможно благодаря часто возникающим инверсиям темп-ры в приземном слое атмосферы или на высотах до 1—2 км, а также благодаря постоянно существующим в атмосфере инверсиям на высотах ок. 40 к.м и выше 80 км. Ветер на определ. высотах может существенно усиливать или  [c.141]


Причиной образования 3. м. является рефракция звука в атмосфере. Т. к. темп-ра в ниж, слоях атмосферы убывает с высотой (вплоть до минус 50—75 "С на высоте 15—20 км), звуковые лучи отклоняются вверх, что приводит к прекращению слышимости на поверхности Земли. Повышение темп-ры до плюс 50—70 "С в слое, лежащем на высоте 40—60 км, приводит к тому, что лучи загибаются кпизу и, огибая сверху 3. м., возвращаются па земную поверхность, образуя зону аномальной слышимости. Вторая и третья зоны аномальной слышимости возникают вследствие одно- и двухкратного отражения звуковых лучей от земной поверхности. Для зон аномальной слышимости характерно запаздывание прихода звука по времени на 10— 30% по сравнению со случаем нормального распространения звука вдоль земной поверхности это запаздывание обусловлено большей длиной искривлённого луча по сравнению с прямым путём вдоль поверхности и меньшей скоростью звука в холодном воздухе. Ветер изменяет форму лучей, уничтожая симметрию в условиях распространения звука, что может привести к значит, искажению кольцеобразной формы 3. м. и даже разомкнуть кольцо, ограничив зону аномальной слышимости нек рым сектором. Изучение 3. м. впервые привело к мысли о наличии слоя с повышенной темп-рой па высоте ок. 40 ки. Исследование аномального распространения звука — один из методов определения темп-р в ср. атмосфере.  [c.88]

Если источник звука расположен на оси П. з. к. или вблизи неё, то звуковые лучи, выходящие под небольшими углами к оси, вследствие рефракции звука будут вновь я вновь возвращаться к ней, т. е. будут захвачены П. з. к. (т. н. волноводное распространение рис., б). Чем больше разность значений скорости звука на поверхности и на оси П. з. к., тел1 в более широком интервале углов захватываются лучи, т. е. тем более эффективным будет П. з. к. При распространении в нём звуковые волны не касаются ни поверхности, ни дна океана и, следовательно, не рассеиваются и но поглощаются на его границах. Благодаря этому звук НЧ, для к-рых поглощение в морской воде весьма мало, может распространяться в П. з. к. на сотни и тысяча км ( сверхдальнее распространение). В одном из зкспери.ментов звук от небольших подводных взрывов регистрировался на расстоянии 19000 км. Способность звука распространяться по П. з, к. на большие расстояния имеет многочисленные практич. приложения. П.з, к. в океане был открыт в сер. 40-х гг. 20 в.  [c.667]

РЕФРАКТОМЕТРИЯ — раздел оптич. техники, посвящённый методам и средствам измерения показателя прелоилевия п твёрдых, жидких и газообразных сред в разл. участках спектра оптич. излучения. Приборы для определения п наз, рефрактометрами. О методах Р. см. в СТ. Рефрактометр. рефракция волн — см. Преломление волн. РЕФРАКЦИЯ ЗВУКА (от позднелат. ге1гас1ю — преломление) — изменение направления распространения звука в неоднородной среде (атмосфера, океан, толща земли), скорость звука в к-рой является ф-цией координат. Ход лучей в данном случае определяется ур-вия-ми геометрической акустики. Звуковые лучи поворачивают всегда к слою с меньшей скоростью звука. Р. з. выражена тем сильнее, чем больше относит, градиент скорости звука.  [c.386]

Благодаря явлению рефракции дальность обнаруженг.я звука от источника уменьшается летом и увеличивается зимой. Так как при увеличении солёности скорость звука увеличивается, то звуковые лучи изгибаются в сторону более пресной воды. Следующий мнемонический приём помогает запомнить направление изгибания звука поведение звуковых лучей можно уподобить путнику, испытывающему в знойный летний день сильную жажду подобно путнику, стремящемуся к холодной и пресной воде, звуковые лучи стремятся к участкам с более холодной и менее солёной водой.  [c.315]

При распространении ультразвуковых колебаний в среде с изменяющимися свойствами звуковой луч преломляется, описывая некоторую криволинейную траекторию. Это явление называется рефракцией звука. При раопространении звука в воздухе и в жидкости я вление рефракции становится сильно заметным при изменении температуры воздуха или жидкости. В металлах местное изменение температуры при нормальных условиях происходит в меньшей степени из-за хорошей их теплопроводности, поэтому явление рефракции здесь сказывается меньше. В ультразвуковой дефектоскопии это явление проявляется редко, так как в большинстве случаев исследование металлов при помощи ультразвуковых колебаний проводят при одной температуре всего объема исследуемого металла  [c.87]


Другой случай атмосферной рефракции можно найти в действии ветра. Уже давно известно, что вообще звуки слышны лучше с подветренной, чем с наветренной стороны от источника явление оставалось, однако, необъясненным, пока Стокс не указал на то, что возрастаюш,ая скорость ветра вверху должна мешать прямолинейному распространению звуковых лучей. Из закона кратчайшего времени Ферма слелует, что ход луча в лвижуш,ейся, но с других точек зрения однородной среде такой же, каким он был бы в среде, все части которой находятся в покое, если бы скорость распространения была увеличена в каждой точке на компоненту скорости ветра в направлении луча. Если ветер — горизонтальный и не меняется в горизонтальной плоскости, то ход луча, направление которого всюду составляет лишь незначительный угол с направлением ветра, можно вычислить на основании тех же принципов, какие были применены в предыдущем разделе к случаю переменной температуры локальная скорость ветра в каждой точке увеличивает или уменьшает нормальную скорость распространения звука в зависимости от того, распространяется ли звук по ветру или против ветра. Таким образом, когда скорость ветра вверх возрастает, что можно рассматривать как нормальное положение вещей, горизонтальный луч, идущий против ветра, постепе1шо загибается вверх и на некотором расстоянии проходит над головой наблюдателя напротив, лучи, идущие в направлении ветра, загибаются вниз, так что наблюдатель, расположенный с подветренной стороны от источника, слышит звук благодаря прямому лучу, который выходит с незначительным уклонением вверх и имеет то преимущество, что он изолирован от помех на большей части своего пути.  [c.135]

ГЕОМЕТРИЧЕСКАЯ АКУСТИКА — упрощённая теория распространения звука, пренебрегающая дифракционными явлениями (см. Дифракция звука). Г. а. основана на представлении о звуковых лучах, вдоль каждого из к-рых звуковая энергия распространяется независимо от соседних лучей. В однородной среде звуковые лучи — прямые линии. Г. а. позволяет рассматривать образование звуковых теней позади препятствий, отражение и преломление лучей на границе между средами или на границе между средой и препятствием (см. Отражение звука, Преломление звука), фокусировку Звука акустич. линзами и зеркалами, рефракцию лучей в неоднородных средах, рассеяние звука в статистически-неоднородных средах с крупномасштабными неоднородностями и т. д. Расчёт звуковых полей при помощи Г. а. даёт удовлетворительную точность только при длине волны звука, достаточно малой по сравнению с характерными размерами параметров задачи (как, напр., размерами препятствия, фокусирующей линзы). Г. а. неприменима или даёт значительную погрешность в областях, где вследствие волновой природы звука существенны дифракцион-  [c.77]

Акуетооптические устройства. На основе эффектов дифракции и рефракции света на УЗ создаются активные оптич. элементы, позволяющие управлять всеми параметрами светового луча, а также обрабатывать информацию, носителем к-рой являются как световая, гак и звуковая волны. Основу таких устройств составляет акустооптич. ячейка (ЛОЯ), состоящая из рабочего тела (твердотельного образца или кюветы с жидкостью), в объёме к-рого происходит взаимодействие света с УЗ-волной, и излучателя УЗ (обычно пьезоэлектрического преобразователя). В зависимости от назначения имеется неск. типов акустооптич. при-  [c.47]

Лит. А р ц и м о D и ч Л. А., Элементарная физика п,дая-мы, 3 изд.. М., 1969 Тверской В. А., Динамика радиационных поясов Земли, М., 19 8 Хесс В., Радиационный пояс и магнитосфера, пер. с англ.. М., 1972. Ю. И. Логачев. ГЕОМЕТРИЧЕСКАЯ АКУСТИКА — упрощённая теория распространения звука, пренебрегающая дифракц. явлениями (см. Дифракция волн., Дифракция звука). В Г. а. звуковое поло представляют в виде лучевой картины, пе зависящей от длины волны, и считают, что звуковая энергия распространяется вдоль каждой лучевой трубки независимо от остальных лучей это даёт обратную пропорциональность между плотностью потока энергии вдоль луча и площадью поперечного сечения лучевой трубки, Б однородных средах лучи — прямые линии, в неоднородных они искривляются (см. Рефракция звука).  [c.437]


Смотреть страницы где упоминается термин Рефракция звуковых лучей : [c.281]    [c.220]    [c.243]    [c.253]    [c.42]    [c.461]    [c.443]    [c.327]    [c.72]    [c.46]    [c.48]    [c.50]    [c.276]    [c.320]    [c.388]    [c.427]    [c.77]    [c.117]   
Смотреть главы в:

Звуковые волны Издание 2  -> Рефракция звуковых лучей

Звуковые и ультразвуковые волны Издание 3  -> Рефракция звуковых лучей



ПОИСК



Рефракция

Х-лучи



© 2025 Mash-xxl.info Реклама на сайте