Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ферримагнетики

Большинство ферримагнетиков относятся к ионным кристаллам и поэтому обладают низкой электропроводностью. В сочетании с хорошими магнитными свойствами (высокая магнитная проницаемость, большая намагниченность насыщения и т. д.) — это важное преимущество по сравнению с обычными ферромагнетиками. Именно это качество позволило использовать ферриты в технике сверхвысоких частот, где они произвели -целый переворот. Обычные ферромагнитные материалы, обладающие высокой проводимостью,  [c.342]


В заключение отметим, что обменное взаимодействие в анти-ферро- и ферримагнетиках является косвенным. В обменном взаимодействии принимают участие электроны магнитно нейтральных ионов кислорода, серы и т. п., расположенных между магнитными ионами.  [c.343]

I. Магнитотвердые ферримагнетики 1) с большой коэрцитивной силой — исполнительные двигатели, поляризованные реле, аппаратура сигнализации, магнитные линзы 2) эластичные (резиновые) композиции — магнитные линзы, стопоры, герметизаторы, фиксаторы, подвижные магниты измерительных приборов.  [c.179]

II. Магнитомягкие ферримагнетики 1) с малой коэрцитивной силой — магнитные уси-  [c.179]

Классификация веществ по магнитным свойствам. По магнитным свойствам материалы подразделяются на слабомагнитные (диа-магнетики и парамагнетики) и сильномагнитные (ферромагнетики и ферримагнетики).  [c.14]

Рис. 9-11. Примеры построения результирующих температурных зависимостей индукции для ферримагнетика, имеющего точку компенсации (а) и не имеющего Рис. 9-11. <a href="/info/620604">Примеры построения</a> результирующих <a href="/info/191882">температурных зависимостей</a> индукции для ферримагнетика, имеющего точку компенсации (а) и не имеющего
Ферримагнетики — это кристаллические вещества, магнитную структуру которых можно представить в виде двух или более подрешеток магнитные моменты атомов или ионов находятся в состоянии самопроизвольного магнитного упорядочения, причем результирующие магнитные моменты каждого из доменов отличны от нуля,  [c.8]

М. э, играет определяющую роль при образовании доменной структуры см. Магнитная доменная структура), а также магнитостатических волн в ферро-II ферримагнетиках. Она существенно влияет и на формирование структуры доменных стенок в тонких магнитных плёнках (см., напр., Нееля стенка).  [c.6]

I. Кривая первого (первоначального) и а-магничивания (КПН) получается при Н. ферро- или ферримагнетика из полностью размагниченного состояния монотонно возрастающим от нуля магн. полем, причём направление последнего относительно намагничиваемого тела остаётся неизменным. На КПН можно выделить пять участков, на каждом из к-рых преобладает определ. механизм Н. Участок 1 (рис.)  [c.242]

О К до некоторой критической 0n, называемой температурой Нееля. Если при антипараллельной ориентации локализованных магнитных моментов результирующая намагниченность кристалла равна нулю, то имеет место антиферромагнетизм. Если при этом полной компенсации магнитного момента нет, то говорят о ферримагие-тизме. Различные типы магнитного упорядочения иллюстрируются рис. 10.13. Наиболее типичными ферримагнетиками являются ферриты— двойные окислы металлов состава МО-РеаОз, где М — двухвалэнтный металл (Mg=+, Zn +, u +, Ni"+, Fe +, Mn +).  [c.341]


Если В антиферромагнетике магнитные моменты атомов, направленные на встречу друг другу, неполностью взаимно компенсируются, то о данном явлении говорят как о веско мпенсированном антиферромагнетизме (ферри-магнетизме). Степень нескомпенсированности у различных ферримагнитных веществ неодинакова. Так, например, ферримагнетики типа Ее20з-Ы10 и ЕегОз-МпО, относящиеся к классу ферритов, обладают Сильным ферромагнетизмом.  [c.152]

Магнитные свойства. Среди магнитоупорядоченных материалов в особую группу выделяют ферримагнетики, или, иначе, ферриты. В отличие от простых ферромагнетиков, или антиферромагнетиков, характерной особенностью которых является расположение магнитных атомов в трансляционно-эквивалентных узлах, к ферримагнети-кам относят материалы, в которых имеются неэквивалентные в кристаллографическом и (или) в магнитном отношении подрешетки. При таком определении ферри-магнетизма ферромагнетик представляет собой частный Jiy4afl ферримагнетика с одной магнитной подрешеткой, а простой антиферромагнетик — частный случай ферримагнетика с двумя эквивалентными подрешетками. Наличие неэквивалентных подрешеток определяет богатство магнитных свойств ферримагнетиков, отличающихся от свойств ферро- и антиферромагнетиков, хотя при определенных условиях можно найти общие черты среди этих различных групп магнетиков.  [c.707]

Магнитные свойства ферримагнетиков были впервые объяснены Неелем fl] на основе двухподрешеточной модели, предложенной им для ферритов со структурой шпинели (см. ниже), в которой магнитные ионы занимают тетраэдрические позиции (узлы Л) и октаэдрические позиции (узлы В), Основным взаимодействием является антиферромагнитное (отрицательное) взаимодействие между ионами из различных подрешеток, что вызывает  [c.707]

Поведение величины Ms в зависимости от температуры и поля может носить более сложный характер, чем в ферромагнетиках, так как характер изменения Мл и. Иа с температурой и с полем может быть различным. Так, при повышении температуры может быть монотонное уменьшение Ms и обращение A Is в нуль в точке Кюри Тс, выше которой вещество парамагнитно, хотя па-рамашитная восприимчивость изменяется с температурой по закону, отличающемуся от закона Кюри для простых парамагнетиков. При повышении температуры в области ниже Тс возможно также увеличение спонтанной намагниченности в определенном температурном интервале, Для некоторых ферритов, в частности для многих редкоземельных ферритов — гранатов (см. табл. 29.15 и рис, 29.22), существует температура компенсации Гкомп. при которой намагниченности подрешеток становятся одинаковыми и результирующая намагниченность обращается в нуль. Появление точки компенсации возможно также при изменении состава ферримагнетика. например в иттрий-железо-галлиевых гранатах.  [c.707]

Перейдем теперь к описанию проблем, составляющих основу магнитоупругости. Исследование взаимодействия магнитного поля с упруго-деформируемыми электропроводящими телами составляет предмет магнитоупругости. Укажем лишь некоторые из них магнитострикционная деформация кристаллических тел пьезомагнетизм магнитоупругость тел, обладающих свойством магнитной поляризуемости задачи индукционного нагрева тел задачи разрушения тел под действием импульсных электромагнитных полей и др. Перечисленные проблемы возникают, в частности, при создании импульсных соленоидальных катушек, магнитогидродинамических ускорителей, различных типов магнитокумулятивных генераторов при управлении движением плазмы и во многих других прикладных задачах, где влияние магнитного поля существенно сказывается на деформации твердого тела. Более сложными задачами магнитоупругости являются задачи взаимодействия с электромагнитным полем материалов, обладающих свойством магнитной поляризуемости (ферромагнетики, антиферромагнетики, ферримагнетики). Это объясняется, прежде всего, отсутствием простых фундаментальных з -  [c.239]

Таким образом, ферримагнитные материалы внешне проявляют ферромагнетизм. Выше точек Кюри и Нееля антиферромагнетики, ферромагнетики и ферримагнетики становятся парамагнетиками. При низких температурах ферримагнетики так же, как и ферромагнетики, имеют большую самопроизвольную намагниченность. С повышением температуры намагниченность ферримагнетиков может изменяться не монотонно. Примером ферримагнит-ного материала является магнетит (магнитный железняк) или двойная окись железа (класс веществ — окислов, называемых ферритами).  [c.68]


К ферримагнетикам относят вещества, в которых обменное взаимодействие осуществляется не непосредственно между магнитоактивными атомами, как в случае ферромагнетизма, а через немагнитный ион кислорода. Такое взаимодействие называют косвенным обменным или сверхобменным. Это взаимодействие в большинстве случаев в ферримагнитных веществах приводит к антипарал-лельной ориентации магнитных моментов соседних ионов (т. е. к антиферромагнитному упорядочению). Однако количество ионов с магнитными моментами, ориентированными условно вверх и вниз, а также величины их моментов неодинаковы. Поэтому магнитные моменты ионов не полностью компенсируются и ферримагнитные вещества обладают магнитным моментом и имеют доменную структуру, которая исчезает выше температуры Кюри.  [c.87]

Ферримагнетик — кристаллическое вещество, магнитную структуру которого можно представить в виде двух или более подреше-ток, причем результирующие магнитные моменты каждого из доменов отличны от нуля.  [c.267]

Допустим, что соотношения между ординатами кривых fi au i и макс 2 при различных температурах для какого-то феррита такие, как это показано на рис. 9-11, а. Тогда при некоторой температуре ниже точки Кюри получится компенсация, и результирующая индукция насыщения В акс образца станет равной нулю. Эту точку называют точкой компенсации /коып- За точкой компенсации индукция в образце ферримагнетика меняет знак и затем становится равной напряженности внешнего поля (которое мало и в масштабе чертежа близко к нулю) в точке Кюри. У различных ферримагне-тнков точка компенсации может быть, а может и отсутствовать, как это видно, например, из рис. 9-11, б.  [c.274]

Процентный состав компонентов играет существенную роль в получении тех или иных магнитных свойств материала. Как видно из рис. 9- 9, высокие значения р..(, достигаются на довольно узком участке тронной диаграммы. Применяющиеся в технике ферриты называют оксиферами, желая подчеркнуть, что они представляют собой сло.жные оксидные ферримагнетики, что, конечно, более правильно, однако первое название нолучилэ большее распространение. За рубежом для некоторых типов ферритов употребляется название феррокскуб , подчеркивающее кубическое строение решетки этим материалов.  [c.284]

Плоскополяриаованное колебание Е можно представить в виде двух круговых противоположно направленных колебаний (рис. 11.21, а) Е,, поляризованного по кругу вправо, и Еа, поляризованного по кругу влево. В каждый момент времени эти составляющие образуют с плоскостью колебаний АА равные углы и в сумме дают вектор Е, лежащий в этой плоскости. Если такие колебания попадают в среду, в которой скорость распространения право-и левополяризованной составляющих оказывается неодинаковой, например е, < Са, то колебание Ej будет отставать от колебания Ез и по выходе из среды между ними возникнет разность фаз S. Складываясь, колебания Ei и Е дают снова плоскополяризованное колебание Е, но с плоскостью колебаний ВВ, повернутой относительно начального положения этой плоскости АА на угол 6/2 в направлении вращения более быстро распространяющегося колебания Ej (рис. 11.21, б). Такое явление поворота (вращения) плоскости колебаний или соответственно плоскости поляризации плоскополяризованной электромагнитной волны происходит при прохождении ее через намагниченный ферро- и ферримагнетик в направлении приложенного намагничивающего поля Н (в продольном магнитном поле). Это явление было открыто Фарадеем и называется эффектом Фарадея В металлических ферромагнетиках, сильно поглощающих электромагнитные волны, явление Фарадея можно наблюдать лишь в тонких пленках. В ферритах с высоким удельным электрическим сопротивлением, слабо поглощающим энергию электромагнитной волны, эффект Фарадея может быть реализован в образцах длиной в  [c.307]

ВОЛНА бегущая—распространение возмущения в среде ВОЛНА (световая — электромагнитное излучение, содержащее в своем составе синусоидальные электромагнитные волны с длинами волн в диапазоне 0,4...0,76 мкм синусоидальная—распространение в среде гармонических колебаний какой-либо физической величины, происходящих со строго определенной частотой спиновая — волна нарушений спинового порядка в магнитоупорядоченной среде (ферромагнетике, ферримагнетике и антиферромагнетике) ударная — распространение в среде области, внутри которой давление резко повышено по сравнению с давлением в соседних областях уединенная — волна с устойчивым профилем в нелинейной диспергирующей среде, ведущая себя подобно частице цилиндрическая— волна, имеющая цилиндрический волновой фронт) ВОЛНЫ [вторичные — волны электромагнитные, излучаемые молекулами в процессе вынужденных колебаний той же частоты, что и падающий свет гравитационные — поверхностные волны, в которых основную роль играет сила тяжести или свободное гравитационное поле, излучаемое ускоренно движущимися массами де Бройля — волны, связанные с любой движущейся частицей и отражающие ее квантовую природу инфразнуковые — волны звуковые с частотой у<16Гц]  [c.227]

Большое число АФМ прозрачно в видимой области эл.-магн. спектра. В одноосных прозрачных АФхМ обнаружено значит, изменение линейного двойного лу-чег реломлепия света (см, Коттона — Мутона эффект), пропорциональное L . Величина двойного лучепреломления сравнима с круговым двойным лучепреломлением Фарадея эффектом) в ферримагнетиках. Магн. двойное лучепреломление в АФМ определяется зависимостью тензора диэлектрич. проницаемости е от величины ко.мпонентов вектора L.  [c.112]

БЛОХА СТЁПКА (блоховская степка, блоховская доменная граница) в широком смысле — область (сло11) внутри магнитоупорядоченного вещества (ферромагнетика, ферримагнетика или слабого ферромагнетика), разделяющая смежные домены.. Внутри этой области происходит поворот вектора намагниченности М от его направления в одном домене к направлению в соседнем домене (см. Магнитная доменная структура).  [c.214]


ГИСТЕРЕЗИС МАГНИТНЫЙ — неоднозначная (необратимая) зависимость намагниченности М магнитоупорядоченного вещества (магнетика, напр. ферро-или ферримагнетика) от виеш. магн. поля Н при его циклич. изменении (увеличении и уменьгоении). Общей причиной существования Г. м. является наличие в оп-редел. интервале изменения Л среди состояний магне тика, отвечающих минимуму термодинамического потенциала, метастабильных состояний (наряду со ста-Сильными) к необратимых переходов между ними. Г. м, можно также рассматривать как проявление магн. ориентационных фазовых переходов первого рода, для  [c.492]

ПАРАПРОЦЁСС истинное намагничивание) — возрастание во внеш. магн. поле Н абс. величины намагниченности М на завершающем этапе намагничивания ферро- и ферримагнетиков после процессов смещения и вращения ), П. обусловлен ориентацией в поле Н. элементарных носителей магнетизма спиновых и орбитальных магн, моментов атомов или ионов), остававшихся неупорядоченными вследствие дезорганизующего действия теплового движения. На этапе П. намагниченность М под действием внеш. поля стремится приблизиться к величине абс. насыщения Мд, т. е. к намагниченности, к-рую имел бы ферри- или ферромагнетик при Т— ОК. П. в большинстве случаев даёт малый прирост намагниченности, поэтому практически процесс намагничивания считают законченным при достижении техн. насыщения. Вблизи точки Кюри, где роль процессов смещения и вращения уменьшается, а П., наоборот, увеличивается вследствие увеличения числа магн. моментов атомов, разупорядоченных возрастающим тепловым движением), он почти полностью определяет характер намагничивания ферро- и ферримагнетиков.  [c.545]

Р. м. в ферримагнетиках и антиферромагнетиках обусловлена в общем теми же механизмами, что и в ферромагнетиках, однако её проявления осложнены наличием неск. магн. подрешёток. Особый случай представляют спиновые стёкла, характеризующиеся широким спектром времён Р. м. и длительной релаксацией ыетастабильных магн. состояний.  [c.322]


Смотреть страницы где упоминается термин Ферримагнетики : [c.657]    [c.659]    [c.660]    [c.676]    [c.681]    [c.681]    [c.274]    [c.301]    [c.9]    [c.528]    [c.249]    [c.478]    [c.633]    [c.655]    [c.655]    [c.678]    [c.699]    [c.11]    [c.11]    [c.11]    [c.11]    [c.121]    [c.545]    [c.647]   
Смотреть главы в:

Материаловедение Технология конструкционных материалов Изд2  -> Ферримагнетики

Физические методы исследования металлов и сплавов  -> Ферримагнетики


Материалы в приборостроении и автоматике (1982) -- [ c.8 ]

Физическое металловедение Вып I (1967) -- [ c.281 , c.283 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте