Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Понятие о продольном изгибе

Понятие о продольном изгибе  [c.124]

ГЛАВА XII. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ 53. Понятие о продольном изгибе  [c.120]

Сформулируем сначала понятие о деформации изгиба. Изгибом стержня называется изменение кривизны его продольной оси. Изгиб является плоским, если ось стержня остается кривой линией, расположенной в одной плоскости.  [c.192]

ПОНЯТИЕ О ПРОДОЛЬНО-ПОПЕРЕЧНОМ ИЗГИБЕ  [c.216]

Исторически создание основ науки о прочности — сопротивления материалов в семнадцатом и восемнадцатом веках может быть отмечено обнародованием закона Гука (1660 г.), уравнения изогнутого бруска (Яков Бернулли в 1705 г.), теории продольного изгиба стержня (Эйлер, 1744 г.), теории сдвига и кручения валов (Кулон, 1776—1787 г.), определения видов деформации и понятия о модуле упругости (Юнг, начало XIX в.).  [c.13]


После того как введено понятие о коэффициенте ф, расчет стержней на продольный изгиб ведут по той же формуле, как и на простое сжатие, но только допускаемое напряжение берут не полное, а пониженное (16.19), умноженное на коэффициент ф. Следовательно, напряжения, возникающие при сжатии стоек, должны быть меньше допускаемых напряжений при продольном изгибе  [c.489]

Устойчивость - термин, широко применяемый в математике, естествознании, технике и обыденной жизни. Толковый словарь Даля определяет слово устойчивый как стойкий, крепкий, твердый, не шаткий . Термин устойчивость встречается уже в работах Эйлера по продольному изгибу стержней, переведенных на русский язык. Лагранж, Пуассон и другие математики прошлого широко использовали термин устойчивость применительно к задачам о движении небесных тел. Теория регулятора Уатта, разработанная Максвеллом и Вышнеградским, была в сущности первым применением понятия устойчивости в машиноведении и отправной точкой для создания теории автоматического ретулирования (позднее - более общей теории автоматического управления). Р. Беллман характеризовал устойчивость как сильно перегруженный термин с неустановившимся определением . Однако большинство трактовок этого понятия связано с определением устойчивости по Ляпунову и его дальнейшими обобщениями. Это полностью относится и к устойчивости механических систем [6].  [c.455]

Ф. С. Ясинский одним из первых указал на необходимость экспериментального и теоретического исследования потери устойчивости за пределами упругости, введя понятие о двух модулях упругости и Модуль Е = onst характеризует жесткость материала в растянутой зоне стержня, выпучивщегося при продольном изгибе. Геометрический смысл модуля Е ясен из рис. 349 E=tga.  [c.365]

Понятие о деформации тел при растяжении, сжатии, сдвиге, пешеречном и продольном изгибе, кручении. Предел упругости. Предел прочности. Запас прочности.  [c.542]

При помощи понятия о ядре сечения можно значительно упростить вычисление наибольших напряжений от изгиба в случае, когда изгиб происходит не в главной плоскости. Например, пусть тт на рис. 230 будет продольная плоскость б алки, в которой действует изгибающий момент М, кпп — соответствующая нейтральная ось, которая образует угол а с плоскостью тт (см. стр. 195). Обозначая-через а ,аз наибольшее напряжение в наиболее удаленной точке с и через d ее расстояние от нейтральной оси пп, находим, что напряжение в какой-либо другой-  [c.217]


В последующем задаче об изгибе балки уделяли много внимания крупные ученые, в числе которых были Мариотт, Лейбниц, Варньон, Яков Бернулли, Кулон и др.. Пишь в 1826 г. с выходом в свет лекций по строительной механике Навье был завершен сложный путь исканий решения задачи об изгибе балки, затянувшийся во времени почти на двести лет. Навье дал правильное решение этой задачи, им впервые введено понятие напряжения. Им же сделан существенный шаг в направлении упрощения составления уравнений равновесия, состоявший в том, что Навье отметил малость перемещений и возможность относить уравнения равновесия к начальному недеформированному состоянию. Это очень широко используемое положение иногда называют принципом неиз жнности начальных размеров. В истории развития механики деформируемого твердого тела важную роль сыграли такие крупные ученые, как Лагранж, Коши, Пуассон, Сен-Венан. Особо следует отметить заслуги Эйлера, впервые определившего критическое значение сжимающей продольной силы, приложенной к прямолинейному стержню (1744). Решение этой задачи во всей полноте тоже заняло по времени почти двести лет Дело в том, что решение Эйлера было ограничено предположением о линейно-упругом поведении материала, что накладывает ограничение на область применимости полученной Эйлером формулы. Применение эюй формулы за границами ее достоверности и естественное в этом случае несоответствие ее экспериментальным данным на долгое время отвлекло интерес инженеров от этой формулы и лишь в 1889 г. Энгессером была предпринята попытка получить теоретическое решение задачи об устойчивости за пределом пропорциональности. Он предложил 1аменить в формуле Эйлера модуль упругости касательным модулем i = da/di. Однако обоснования этому своему предложению не дал. В 1894 г. природу потери устойчивости при неизменной продольной силе правильно объяснил русский ученый Ясинский и лишь в 1910 г. к аналогичному выводу пришел Карман. Поэтому исторически более справедливо назвать его решением Ясинского —Кармана, предполагая, что Карман выполнил это исследование независимо от Ясинского.  [c.7]

Изгибом бруса нюывается такая его деформация, которая сопровождается изменением кривизны его осевой линии. Введем понятие продольного волокна как совокупности материальных точек бруса, расположенных непрерывно вдоль линии, параллельной оси бруса. Малый отрезок этой материальной линии назовем малым продольным волокном. Брусья с прямолинейной осью называются балками, если они испытывают преимущественно деформацию изгиба. Рассмотрим изгиб балок постоянного по длине поперечного сечения. При этом ось Ог направим вдоль оси балки, а оси Ох и Оу совместим с главными центральными осями инерции поперечного сечения. Плоскости Охг и Оуг в этом случае называются главными центральными плоскостями инерции балки. Различают балки сплошного и тонкостенного поперечных сечений (см. 1.2).  [c.227]

К. Понятие усилий в продольных волокнах бруса, близкое по смыслу к нормальным напряжениям в его поперечных сечениях, использовалось уже в работах Г. Галилея. В дальнейшем это понятие развивалось в работах Ф. Мариотта (1620 1684), Парана (1666-1716), Ш. Кулона (1736-1806), Т. Юнга (1773-1829) также ирименительно к теории растяжения и изгиба бруса. В то же время Л. Навье подсчитывал силы взаимодействия отсеченных частей как суммы (интегралы) сил взаимодействия их частиц. Впервые в явном виде понятие напряжения, а значит, и предположение о том, что внутренние силы распределены по поверхности сечения, ввел один из крупнейших математиков и механиков XIX века О. Коши (1789-1857). Это понятие было высказано в основополагаюгцих работах но математической теории упругости, по опо быстро было использовано и в исследованиях прикладного характера, что придало, в частности, теории деформаций бруса современный вид.  [c.33]

Даже беглого взгляда на оглавление достаточно, чтобы увидеть, какие темы освещаются в этой книге. Сюда входят и методы расчета элементов конструкций при продольном нагружении, кручении и изгибе, и основные понятия механики материалов (энергия преобразование напряжений и деформаций, неупругое деформирование и т. д.). К частным вопросам, интересующим инженеров, относятся влияние изменения температуры, поведение непризматических балок, большие прогибы балок, изгиб несимметричных балок, определение центра сдвига и многое другое. Наконец, последняя глава представляет собой введение в теорию расчета конструкций и энергетические методы, включая метод единичной нагрузки, теоремы взаимности, методы податливостей и жесткостей, теоремы об энергии деформации й потенциальной энергии, метод Рэлея — Ритца, теоремы о дополнительной энергии. Она может служить основой для дальнейшего изучения современной теории расчета конструкций.  [c.9]



Смотреть главы в:

Основы технической механики Издание 2  -> Понятие о продольном изгибе

Техническая механика  -> Понятие о продольном изгибе

Основы технической механики Издание 2  -> Понятие о продольном изгибе



ПОИСК



102 — Понятие 101 — Фаз изгибающий

102 — Понятие 101 — Фаз продольный

175 — Внутренние силовые факторы 1.174, 175 — Изгиб продольно-поперечный 1.253—254 Перемещения 1.214—216 — Понятие

175 — Внутренние силовые факторы 1.174, 175 — Изгиб продольно-поперечный 1.253—254 Перемещения 1.214—216 — Понятие в — прямой — Виецентреаное

175 — Внутренние силовые факторы 1.174, 175 — Изгиб продольно-поперечный 1.253—254 Перемещения 1.214—216 — Понятие нагрузка 1.248, 249— Кручение 1.234 — Устойчивост

175 — Внутренние силовые факторы 1.174, 175 — Изгиб продольно-поперечный 1.253—254 Перемещения 1.214—216 — Понятие растяжение (сжатие) 1.223—224 —Изгиб 1.207209 — Косой изгиб 1.220223 — Кручение 1.198207 — Моменты сопротивления 1.201 — 206 — Растяжение 1.195 — Расчет на прочность 1.196, 206, 207, 209 Характеристики жесткост

Изгиб косой Понятие 220Прогиб продольно-поперечны

Изгиб косой Понятие продольно-поперечны

Изгиб продольный

Понятие о продольно-поперечном изгибе

Понятие об устойчивости равновесия упругих систем . 13.2. Продольный изгиб

Продольный и продольно-поперечный изгиб стержней Понятие об устойчивости

Продольный изгиб Понятие об устойчивости равновесия сжатого стержня. Критическая сила

Продольный изгиб прямого стержня Понятие об устойчивости равновесия упругих тел

Устойчивость сжатых стержней Понятие о продольном изгибе



© 2025 Mash-xxl.info Реклама на сайте