Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сферические волны. Решение при начальных условиях

Сферические волны. Решение при начальных условиях 611  [c.610]

Сферические волны. Решение при начальных условиях. 615 Окончательный результат можно написать в виде  [c.614]

Был решен также ряд задач о развитии волны детонации при концентрированном подводе к газу энергии. При этом за начальное распределение параметров принималось, в частности, то, которое соответствует известному решению задачи о сильном взрыве. Известно, что в предположении о мгновенном тепловыделении на фронте волны детонации при таких начальных условиях волна сильной детонации постепенно ослабевает и выходит на нормальный режим распространения. В случае плоских волн этот режим достигается лишь асимптотически, а в случае цилиндрических и сферических волн — за конечное время.  [c.138]


Для этой же модели среды подробно изучены и неавтомодельные режимы распространения одномерных сферических тепловых волн без учета и с учетом движения вещества и с учетом тепловых потерь в первоначально однородной покоящейся среде при двух способах инициирования волн. В первом случае в начальный момент температура среды равна нулю всюду вне сферы радиуса го, а внутри сферы она равна То. Во втором случае в начальный момент в центре симметрии происходит мгновенный подвод энергии. Так как при этом на ранней стадии развития процесса экзотермическими процессами и движением среды можно пренебречь, то в качестве начального условия для температуры используется известное автомодельное решение для тепловой волны в неподвижной инертной среде [19]. Концентрация 3 принимается всюду в начальный момент равной единице.  [c.156]

Если численно решать задачу о движении всего газа в целом при каких-то начальных условиях, обеспечивающих возникновение сходящейся ударной волны (задачу со сферическим поршнем , совершающим толчок внутрь), то истинное решение в области с радиусом, который уменьшается пропорционально радиусу фронта, будет все более и более приближаться к предельному автомодельному решению.  [c.619]

Задачу о сферическом поршне можно рассматривать как модельную задачу о взрыве в воздушной атмосфере, если принять, что внутри 2 имеются продукты химической реакции — сильно сжатый газ, который вытесняет воздух, действуя, как поршень. В этом случае в воздухе образуется воздушная ударная волна, которая называется взрывной волной. Для определения движения воздуха между взрывной волной S и поверхностью 2, за которой находятся продукты взрыва, необходимо решать задачу газовой динамики. Для решения этой задачи выше подготовлены все уравнения и дополнительные начальные и граничные условия.  [c.386]

Сферические юлиы. Решение при начальных условиях 013 Скорость в одном и том же ряду волн равна  [c.612]

Практические тестовые задачи, обладающие точными решениями для одномерных течений невязкого совершенного газа, удачно подобраны Хиксом [1968]. Он привел семь тестовых задач, включающих скачки, волны разрежения и взаимодействие волн. Хикс и Пелцл [1968] применяли эти задачи для сравнения точности различных схем в лагранжевых переменных. Гордон и Скала [1969] в качестве тестовых задач использовали плоскую задачу о поршне, плоскую задачу о разлете массы и центрально-симметричную задачу о сферическом взрыве. Никастро [1968] нашел точные автомодельные решения радиационной газодинамики в сферически-симметрнчном случае как для взрыва, так и для схлопывания. Эти решения оказались весьма ценными для проверки столь трудных для численного решения задач, поскольку в них накладывались не слишком жесткие ограничения на начальные условия и вид закона переноса излучения. Стерн-берг [1970] нашел автомодельные решения для распространения плоских, цилиндрических и сферических ударных волн с учетом химических реакций.  [c.487]



Смотреть страницы где упоминается термин Сферические волны. Решение при начальных условиях : [c.240]    [c.225]   
Смотреть главы в:

Гидродинамика  -> Сферические волны. Решение при начальных условиях



ПОИСК



Волна сферическая

Условия начальные

Условия начальные (см. Начальные



© 2025 Mash-xxl.info Реклама на сайте