Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Частичное суммирование рядов функции Грина

Частичное суммирование рядов функции Грина  [c.98]

Замечательная особенность формул Кубо (5.1.61) - (5.1.63) состоит в том, что они внешне очень просты и имеют весьма общий характер. Как мы увидим дальше, с помощью формул Кубо удобно изучать свойства восприимчивостей и кинетических коэффициентов. Однако подход, развитый в разделе 5.1.1, обычно более удобен при решении конкретных задач, так как в нем проще использовать приближенные методы. При удачном выборе базисных динамических переменных даже весьма грубые приближения для корреляционных функций в уравнениях (5.1.36) дают хорошие результаты для восприимчивостей и кинетических коэффициентов (см., например, [68, 108, 144]). В то же время, при использовании формул Кубо всегда приходится производить частичное суммирование бесконечного ряда теории возмущения для корреляционных функций или функций Грина.  [c.354]


Важным обстоятельством является то, что после разложения упорядоченных экспонент в ряды по S все средние значения в правых частях уравнений (6.1.15) и (6.1.17) вычисляются с помощью теоремы Вика, поскольку невозмущенный оператор энтропии (6.1.10) есть билинейная форма от операторов рождения и уничтожения. Для слабо неидеальных квантовых газов множитель Лагранжа 52(/ /2 1 2) играет роль малого параметра. В этом случае уравнения (6.1.15) и (6.1.17) можно решить методом итераций (см. задачу 6.1). Если корреляции дают существенный вклад в неравновесные термодинамические величины, то метод итераций непригоден и требуется по крайней мере частичное суммирование формальных рядов теории возмущений. Как уже отмечалось, для равновесных систем суммирование такого рода наиболее удобно проводится в технике температурных функций Грина. Поэтому естественно построить аналогичную технику и для неравновесных состояний.  [c.12]

Смешанные функции Грина. Задача состоит в том, чтобы вывести кинетическое уравнение для функции Вигнера нри t > если начальное состояние системы описывается статистическим оператором (6.4.2). В принципе можно применить метод временных функций Грина, заданных на контуре Келдыша-Швингера С (см. рис. 6.6), но мы сразу же столкнемся с серьезной проблемой. Дело в том, что при вычислении средних значений с начальным статистическим оператором (6.4.2) нельзя пользоваться теоремой Вика и, следовательно, на контуре С не существует обратная одночастичная функция Грина G (l,l ). Иначе говоря, мы не можем записать уравнения движения для G(l,l ) в виде уравнений Дайсона (6.3.29) и (6.3.30). Придется работать непосредственно с цепочкой уравнений Мартина-Швингера для гриновских функций и расцеплять ее на каком-то этапе. Такой подход применялся, например, в работе [153]. К сожалению, он не позволяет продвинуться дальше низшего порядка теории возмущений по начальным корреляциям, так как уравнения цепочки быстро усложняются. В связи с этим напомним два основных достоинства уравнения Дайсона. Во-первых, оно определяет общую структуру кинетического уравнения. Во-вторых, приближения делаются только в массовом операторе, который представляет собой результат частичного суммирования бесконечных рядов теории возмущений для цепочки Мартина-Швингера. Поэтому желательно сформулировать схему вывода кинетического уравнения так, чтобы в ней, в той или иной форме, фигурировало уравнение Дайсона. Мы покажем, что и в случае начального состояния с корреляциями можно вывести уравнение Дайсона, но не для гриновской функции G(l,l ) на контуре Келдыша-Швингера, а для более общего объекта — матричной смешанной функции Грина, заданной на расширенном контуре G. Этот контур лежит в плоскости ( ,ж), как показано на рис. 6.7.  [c.64]


Аналогично двухчастичные, трехчастичные и т. д. функции Грина также представляют собой частичные суммы ряда теории возмущений, изображаемые диаграммами с соответствующим числом внешних линий того или иного типа. Это обстоятельство позволяет выполнять суммирование диаграмм по этапам . Именно, введем, обобщая случаи, представленные на рис. 2—4, понятия части собственной энергий, поляризации вакуума и вершинной части. По определению, частью собственной энергии называется диаграмма (или часть диаграммы), соединенная с остальными ее частями (или краем чертежа) лишь двумя внешними фермионными линиями. Очевидно, она получается из диаграммы рис. 3, если вставить в последнюю все возможные внутренние линии. Аналогично частью поляризации вакуума именуется диаграмма, имеющая лишь две внешние бозонные линии, а вершинной частью — диаграмма с двумя фермионными и одной бозонной внешними линиями. Таким образом, разность определяется суммой всех частей собственной энергии, — суммой всех частей поляризации вакуума, а Г — Г —суммой всех вершинных частей диаграмм. Введем далее понятие неприводимой диаграммы как диаграммы, не содержащей вершинных частей, частей собственной энергии и частей поляризации вакуума. (Неприводимая диаграмма, вообще го- воря, не совпадает со скелетной, ибо может содержать дополнительные внутренние линии.) Неприводимые диаграммы, получающиеся из данной скелетной добавлением различных внутренних линий, мы будем называть принадлежащими ей. Из определения вытекает, что для вычисления элемента 5 -матрицы, соответствующего какому-либо процессу, надо  [c.276]


Смотреть страницы где упоминается термин Частичное суммирование рядов функции Грина : [c.26]    [c.84]   
Смотреть главы в:

Жидкие металлы  -> Частичное суммирование рядов функции Грина



ПОИСК



548 — Ряды

Грина

Грина функция

Частичная



© 2025 Mash-xxl.info Реклама на сайте