Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Криволинейная трещина. Антиплоская задача

При подстановке функции F (2), выражающейся соотношениями (VI.178), (VI.179), (VI.181), (VI.182), (VI.188) и (VI.189), в равенства (VI.27) и (VI.28) найдем сингулярные интегральные уравнения основных антиплоских задач теории упругости для конечной или бесконечной области с круговой границей, ослабленной системой криволинейных разрезов. В частности, если трещина размещена на прямой, проходящей через центр граничной окружности, такие задачи приводятся к интегральным уравнениям [2221 ь  [c.219]


Основные граничные плоские и антиплоские задачи теории упругости для многосвязной области, содержащей криволинейные разрезы и отверстия произвольной формы, сведены в работах [94—96] к системе сингулярных интегральных уравнений первого рода по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. При этом предполагалось, что контуры разрезов и отверстий не пересекаются между собой (см. параграф 3 данной главы). Краевые трещины рассматривались только в некоторых частных случаях граничного контура (окружность, прямая), когда удается построить модифицированные сингулярные интегральные уравнения, не содержащие искомых функций на этом контуре [70, 95]. В последнее время изучались также задачи в случае произвольной симметричной области с краевой трещиной, находящейся на оси упругой и геометрической симметрии [27, 53, 58, 104] (см. также параграфы 3—5 четвертой главы). Ниже, следуя работе [97], приводятся обобщения указанных выше результатов на общий случай многосвязной области с разрезами и отверстиями, когда разрезы одним или двумя концами могут выходить на внешнюю границу и контуры отверстий. Получены численные решения построенных интегральных уравнений при одноосном растяжении бесконечной плоскости с одним или двумя круговыми отверстиями, на контуры которых выходят радиальные трещины.  [c.33]

Заметим, что для антиплоской деформации анализ задачи о криволинейной трещине проводится и аналитическими средствами - путем конформного преобразования - отображения криволинейного отрезка на прямолинейный или на дугу окружности. В случае же плоской задачи аналитические методы эффективны лишь для прямолинейной трещины или для трещины, расположенной вдоль дуги окружности [61].  [c.51]

До сих пор при анализе плоских задач рассматривались прямолинейные трещины, для которых поток энергии однозначно связан с коэффициентами интенсивности напряжений. Формула (2.25) справедлива и для криволинейной трещины, если только в некоторой окрестности своего края она достаточно гладкая. Посмотрим теперь, как будет меняться поток энергии при резком повороте направления ее распространения. Ограничимся задачей об антиплоской деформации безграничного тела.  [c.65]

Точные решения задач продольного сдвига тел с трещинами в случае односвязиых областей могут быть построены методом конформных отображений [10, 233]. Такой подход использовался рядом авторов при исследовании антиплоской деформации бесконечного прост-занства, ослабленного ломаной [55, 233, 399, 439] или ветвящейся 397] трещиной. Задачи о продольном сдвиге тела с полубесконеч-ной трещиной, оканчивающейся одним или двумя симметрично расположенными ответвлениями, решались также методом Винера — Хопфа 199, 100]. В общем случае кусочно-гладких криволинейных трепщн или трещин ветвления антиплоские задачи теории упру гости могут быть решены следующим образом разрез разбивается на гладкие участки и рассматривается как система гладких разрезов, имеющих общие точки пересечения. Таким путем ниже рассмотрен продольный сдвиг бесконечного пространства, ослабленного ломаной или ветвящейся трещиной.  [c.192]


Общая постановка задач о трещинах продольного сдвига, где распределению смещений соответствует случай так называемой антиплоской деформации (напряженное состояние в бесконечном цилиндрическом теле, возникающее под действием постоянных нагрузок, направленных вдоль образующих цилиндра), рассмотрена в работе Г. И. Баренблатта и Г. П. Черепанова (1961). В отличие от трещин нормального разрыва и трепщн поперечного сдвига, в этом случае возможно получить эффективные точные решения многих задач, так как единственное отличное от нуля смещение w удовлетворяет в этом случае уравнению Лапласа. Здесь возможно непосредственное применение широко развитых методов и результатов гидродинамики благодаря очевидной аналогии задач теории упругости для антиплоской деформации и задач плоской гидродинамики. В указанной работе были получены точные решения задач для бесконечного тела, содержащего круговое отверстие с одной или двумя трещинами, нагруженного на бесконечности постоянным касательным напряжением (аналог задач О. Л. Бови для трещин нормального разрыва),и смешанной задачи для изолированной прямолинейной трещины, на части которой задано постоянное смещение (аналог задачи о расклинивании клином конечной длины, рассмотренной И. А. Маркузоном. в 1961 г.). Здесь же исследованы задачи взаимодействия бесконечной системы одинаковых трещин, расположенных вдоль действительной оси, и случай, когда равные трещины расположены в виде вертикальной однорядной решетки. При рассмотрении задачи о развитии криволинейных трещин продольного сдвига, а также трепщн, форма которых мало отличается от прямолинейной или круговой, авторы использовали гипотезу о том, что развитие криволинейной трещины продольного сдвига происходит по направлению максималь-  [c.386]


Смотреть главы в:

Дифракция упругих волн  -> Криволинейная трещина. Антиплоская задача



ПОИСК



Задача антиплоская

Задача о трещине



© 2025 Mash-xxl.info Реклама на сайте