Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Одномерные резонансные системы

ОДНОМЕРНЫЕ РЕЗОНАНСНЫЕ СИСТЕМЫ  [c.88]

Одномерные резонансные системы  [c.90]

В отличие от одномерного уравнения Йап-дер-Поля, здесь могут иметь место резонансные соотношения мел ду частотами со,,. .., (1) . При ц = 0 порождающая система для (25) состоит из п отдельных уравнении 2-го порядка  [c.105]

Реальные системы всегда ограничены и в них имеют место многократные взаимодействия волн с границами. Их расчет можно производить с помощью последовательного применения формул для однократного взаимодействия, полученных в предыдущей главе. Следовательно, задача о колебаниях одномерных систем с изменяющимися во времени размерами, на первый взгляд, не содержит в себе каких-либо принципиально новых проблем, так как может быть сведена к известной. Это не совсем так. Дело в том, что ограниченная система является резонансной и, естественно, возникает проблема выявления ее резонансных свойств. Последние же связаны с собственными колебаниями систем переменной длины.  [c.88]


Модель Эйнштейна. Средняя энергия линейного осциллятора с частотой 0) равна (п)/гсо. Энергия Е системы из N одномерных линейных осцилляторов, имеющих одну и ту лее резонансную частоту со, равна просто сумме энергий осцилляторов  [c.214]

Особенности волновых процессов в нелинейных системах удобно пояснить на примере одномерных возмущений в энергетически пассивной, слабонелине1шой однородной среде, когда спектральный язык ещё не утрачивает свою пригодность. В линейном приближении поле В. есть суперпозиция нормальных гармонич. В. с частотами й) и волновыми числами к, подчиняющихся дисперс. ур-нию (8). А в нелинейном режиме гармонич, В. взаимодействуют, обмениваясь энергией и порождая В, на новых частотах. В частности, затравочное возмущение на частоте ш сопровождается появлением высших гармоник на частотах 2<в, Зи и т. д. Энергия колебаний как бы перекачивается вверх по спектру. Эффективность этого процесса зависит от дисперс. свойств системы м может быть велика даже при очень слабой нелинейности. Действительно, если дисперсии нет. то В. всех частот распространяются синхронно с одинаковыми Уф, и их взаимодействие будет иметь резонансный, накапливающийся характер, поэтому на достаточно больших длинах (в масштабе к) перекачка энергии может осуществляться весьма эффективно. Если дисперсия велика, то фазовые скорости гармонич. возмущений, имеющих разные частоты, не совпадают, с.т1едовательно, фаза их взаимных воздействий будет быстро осциллировать, что приведёт на больших длинах к ничтожному результирующему эффекту. Наконец, возможны специальные, промежуточные случаи, когда я системе с сильной дисперсией только две (или несколько) избранные В. с кратными частотами имеют одинаковые 1 ф и поэтому эффективно взаимодействуют. В ряде случаев достигается своеобразное спектральное равновесие, когда амплитуды всех синхронных гармоник сохраняются неизменными и суммарное поле имеет вид стационарной бегущей Б, вида (1), при этом в случае сильной дисперсии ф-ция f x—vt) близка к синусоиде, а при слабой — она может содержать участки резкого изменения поля (импульсы, ступеньки и др.), поскольку число гармоник в её спектре велико.  [c.324]

Як = ехр(Як 1 — Як) — ехр(Як — Як+1), описывающее нелинейную модель одномерного кристалла. Оператор Ь может быть сингулярным интегральным оператором, такие операторы возникают в краевых задачах теории аналитич. ф-ций. Их можно использовать для изучения нелинейных ур-ный, возникающих в теории внутр. волн. Оператор Ь может быть матричным. Так, для применения О. з. р. м. к Шрёдингера уравнению нелинейному нужно подставить в ур-ние (2) вместо оператора Ь одномерный оператор Дирака (см. Дирака уравнение). При изучении важной для нелинейной оптики задачи о резонансном взаимодействии системы трёх волн с помощью О. з. р. м, в качестве Ь следует использовать обобщение оператора Дирака.  [c.389]


В п. 3.2 будут рассмотрены свободные колебания одномерного затухающего осциллятора. Затем мы изучим переходную характеристику такого осциллятора, выведенного из положения равновесия силой, изменяющейся по гардюническому закону. Мы обнаружим интересное явление переходных биений между внешней силой и переходным процессом свободных колебаний. Затем мы перейдем к установившимся колебаниям, которые совершает система после окончания переходного процесса. Мы рассмотрим также резонансную характеристику осциллятора, находящегося под действием внешней силы при медленном изменении ее частоты. В п. 3.3 мы будем изучать системы с двумя степенями свободы и обнаружим, что каждая мода свободных колебаний вносит свой вклад в вынужденное движение данного движущегося элемента. В частности, будет выведено очень простое соотношение, которое покажет, что движение данного элемента является суперпозицией независимых вкладов от каждой моды. В п. 3.4 мы обнаружим замечательные свойства системы с несколькими степенями свободы, находящейся под воздействием внешней силы, частота которой либо выше, либо ниже частоты самой низкой моды системы. В п. 3.5 мы обратимся к системе из многих связанных маятников, находящейся под внешним воздействием, и откроем существование экспоненциальных волн.  [c.103]

Более сложными и менее разработанными являются методы расчета нестационарных задач для деформируемых конструкций, в особенности при меняющихся граничных условиях (ударное и Биброударное нагружения, переходы через резонансные состояния, динамика систем с зазорами и переменными точками контакта, воздействие движущихся нагрузок и пр.). К наиболее математически простым, а вместе с тем физически корректным методам численного анализа нестационарных явлений в континуальных одномерных системах относится разработанный в последние годы метод прямого математического моделирования (ПМ.М) на ЭВМ процессов распространения волн механических возмущений (напряжений, деформаций, скоростей и т.п.) [ 5].  [c.491]

В большинстве случаев наиболее полезной оказывается система уравнений (3,20), поскольку электрическое поле и механическое напряжение являются весьма удобными независимыми пере-менш>1мя. Также удобна система уравнений (3.21), поскольку для кристаллов всех классов, за исключением триклинных и моноклинных, = 1/е, д, Системы уравнений (3.22) и (3,23), в которых в качестве независимых переменных используются компоненты деформации, удобны для описания передачи импульсов акустических колебаний, когда преобладает деформация вдоль одного из направлений. Для резонаторов в большинстве случаев, строго говоря, деформацию нельзя считать одномерной, однако это является достаточно хорошим приближением в случае резонансных колебаний тонких пластин большой площади на тол-щинных и некоторых сдвиговых модах. Условие одномерного напряжения имеет место для резонансных колебаний на продольных модах и в статическом случае. Таким образом, системы уравнений (3,20) и (3,21) во многих практически интересных случаях можно существенно упростить, в то время как системы (3,22) и (3.23) поддаются упрощению лишь в некоторых специальных случаях.  [c.225]


Смотреть страницы где упоминается термин Одномерные резонансные системы : [c.350]    [c.67]    [c.132]    [c.171]   
Смотреть главы в:

Волны в системах с движущимися границами и нагрузками  -> Одномерные резонансные системы



ПОИСК



Газ одномерный

Резонансные



© 2025 Mash-xxl.info Реклама на сайте