Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Розенфельд

Следует отметить большую эффективность предложенной и разработанной И. Л. Розенфельдом, Л. И. Антроповым и А. Т. Петренко комбинированной катодно-ингибиторной защиты, сочетающей применение замедлителей катионного типа с защитной катодной поляризацией и превышающей частные защитные эффекты от катодной поляризации и от введения ингибитора коррозии.  [c.349]

На рис. 336 изображена схема простого прибора Г. В. Акимова и И. Л. Розенфельда для определения скорости коррозии металлов с кислородной деполяризацией по объему поглощенного кислорода, определяемого по подъему столбика подкрашенного раствора в соответствующем колене манометрической трубки.  [c.448]


Рис. 208. Схема, поясняющая влияние анодного замедлителя коррозии на силу тока и потенциал металла (по И. Л. Розенфельду) Рис. 208. Схема, поясняющая влияние <a href="/info/469844">анодного замедлителя коррозии</a> на <a href="/info/279416">силу тока</a> и <a href="/info/235817">потенциал металла</a> (по И. Л. Розенфельду)
Допустимость того или иного контакта может быть определена количественным показателем коррозии. И.Л. Розенфельд считает, что абсолютно допустимы контакты при скорости коррозии анода до 50 г/(м год), недопустимы контакты при скорости коррозии анода более 150 г/(м - год).  [c.203]

Хотя по концепции И.Л. Розенфельда под тонкими слоями электролита коррозионный процесс контролируется катодной реакцией, т.е. диффузией кислорода к металлической поверхности, полученные экспериментальные результаты не согласуются с этим. Была установлена, в частности, линейная связь между сопротивлением переносу зарядов и плотностью протекающего тока через модель Ре/Ре. Иначе говоря, перенос зарядов является более общим фактором, чем поляризационное сопротивление. Отсюда следует важный вывод, что перенос зарядов в тонком слое электролита контролирует коррозионный процесс (а не диффузия кислорода согласно теории И.Л. Розенфельда). Итак, хотя толщина слоя электролита равна толщине диффузионного слоя, но массоперенос не определяет в этом случае скорость коррозии.  [c.21]

И. Л. Розенфельд [140—144] предположил, что подобный эффект можно получить, если вводить в раствор органические соединения, потенциал восстановления которых положительнее, чеМ  [c.51]

По данным И. Л. Розенфельда и Л. И. Антропова, катодная поляризация металла от внешнего источника тока может существенно изменить скорость его коррозии в результате десорбции анионов или адсорбции катионов, которые повышают поляризацию катодного процесса, особенно резко при переходе потенциала нулевого заряда данного металла. Таким образом, катодная поляризация повышает эффективность катионных ингибиторных добавок, а эти добавки могут повысить эффективность катодной электрохимической защиты металлов, снижая значение необходимого защитного тока. Так, защитный ток для железа в 1-н. H2SO4 в присутствии 0,1 г/л трибензиламина (СдНбСН2)зК уменьшается в 14 раз. При катодной поляризации замедляющее действие могут оказывать такие катионные добавки, которые обычно не являются ингибиторами коррозии.  [c.366]


Исследование щелевой коррозии металлов основано на различных способах создания щелей (зазоров) и наблюдения за поведением металлов в этих условиях. На рис. 342 приведен метод создания зазора по И. Л. Розенфельду и И. К- Маршакову при помощи плексигласовой накладки с прямоугольным отверстием, крепящейся на исследуемом образце плексигласовыми винтами. Набор накладок с различной шириной прямоугольного отверстия позволяет изменять величину зазора между двумя поверхностями образца исследуемого металла и поверхностями плексигласа. Коррозию оценивают по потерям массы и площади поражения исследуемого образца после выдержки в коррозионном растворе.  [c.455]

И. Розенфельд с сотрудниками для нитрита дициклогексиламмония, тщательно очищенного многократной перекристаллизацией из спирта, установил более низкое значение, равное 0,0013 Па [44а]. —Примеч.. авт.  [c.273]

Для получения полной анодной кривой бьша применена разработан ная И.Л. Розенфельдом методика предварительной активации поверх кости, которая дает поляризационные кривые, характерные для пассиви рующегося металла с областями активного растворения, активно-пас сивного и пассивного состояния. На рис. 22 приведены анодные поляри зационные кривые алюминия АД1 и алюминиевых покрытий при ско рости наложения потенциалов 10 мВ/с в средах 0,01 н. Na l. В 0,01 н растворе Na l стационарный потенциал стали с электрофоретическим покрытием при гидростатическом обжатии на 0,1 Вис гидроимпульс ным - на 0,2 В положительнее потенциала чистого алюминия и состав ляет - 1,3 и -1,2 В соответственно.  [c.82]

И.Л. Розенфельдом бьшо показано, что алкилированный амин (ИФХАН-1) - эффективный ингибитор наводороживания в присутствии сероводорода. С увеличением содержания ингибитора 30,50,100 мг на 1 л электролита (водного раствора, содержащего 0,5 % Na l + 250 мг/л СНзСООН + 1200 мг/л H2S, pH = 3,6), количество адсорбированного сталью марки У8А водорода составляет соответственно 12,16 5,99 и 2,09 см /100 г металла. Количество адсорбированного водорода в тех же условиях без ингибитора составляет 14,7 см /100 г.  [c.164]

Частота смачивания сильно сказьшается на скорости коррозии в щели. Как указывает И.Л. Розенфельд, при редком увлажнении металла (одно смачивание в 2 сут) коррозия непрерьтно увеличивается с уменьшением ширины зазора и превышает скорость коррозии на свободной поверхности, так как на открытой поверхности электролит быстро высыхает, а в зазоре сохраняется более длительное время. Однако при очень частом смачивании обеспечивается постоянный контакт металла с коррозионной средой как внутри зазора, так и на открытой поверхности, и в узкой щели скорость коррозии меньше вследствие диффузионных ограничений катодной реакции восстановления кислорода. При средней частоте смачивания скорость коррозии в щели проходит через максимум, что обусловлено одновременным влиянием обоих факторов, определяющих скорость коррозии при редком и частом смачивании.  [c.205]

В качестве примера И.Л. Розенфельд приводит результаты испытаний различных смазок предупреждения щелевой коррозии нержавеющей стали в 0,5н. растворе Na l под резиновой прокладкой при испытании пяти образцов из стали марки 2X13 без смазки прокорродировали все пять образцов, при дополнительном применении вазелина — три образца, при использовании пушечной смазки - один образец. Из пяти образцов стали марок Х17 и Х28 без смазки прокорродировали все пять, при дополнительной защите вазелином и петролатумом не прокорродировал ни один образец.  [c.206]

Другой механизм, при котором возможно коррозионное растрескивание, заключается в образовании и развитии разрушения только за счет механических факторов. При этом предполагается [57], что коррозионная среда содержит ионы или компоненты, которые могут или диффундировать в металл, образуя хрупкую фазу (например, гидрид) в вершине трещины, или сегрегировать в районы, непосредственно прилегающие к трещине, способствуя зарождению новой трещины. В качестве специфического элемента обычно рассматривают водород, скорость диффузии которого может быть сопоставима со скоростью развития трещины. При этом многие исследователи [ 58 и др.] указывают на возможность образования гидридов, обладающих низкой пластичностью и вязкостью и затрудняющих пластическую деформацию металла перед вершиной трещины. По мнению В. А. Маричева и И. Л. Розенфельда [59, с. 5—9], следует учитывать эти возможности понижения когезивной прочности титановых сплавов под действием достаточно высокой концентрации водорода в твердом растворе.  [c.58]


Это предположение было обоснованным, так как многие исследования показали, что присутствие ряда органических веществ, особенно нитро- и нитрозосоединений, перемещает потенциал платино-водородного электрода далеко в положительную сторону [8 91. Помимо того, было доказано, что практически всю анодную поляризационную кривую, приведенную на рис. 17, можно получить путем подбора серии окислителей с широким набором редокс-потен-циалов [85 88]. И. Л. Розенфельд и его сотрудники создали широкую номенклатуру эффективных ингибиторов, в которых сочетаются пас-сивационные и адсорбционные свойства, что способствует защите черных и многих цветных металлов от коррозии. Это достигается в результате перевода металла в пассивное состояние при восстановлении окислительного компонента ингибитора, адсорбция других компонентов ингибитора сокращает активную поверхность и облегчает достижение пассивности.  [c.51]

Вообще говоря, в морской воде в качестве окислителя могут выступать ионы или молекулы воды и растворенный кислород. Исследованию катодных процессов в хлоридсодержащих средах были посвящены работы Г. В. Акимова, Н. Д. Томашева, Г. Б. Кларк, И. Л. Розенфельда. Как показали исследования, коррозия магния и его сплавов протекает в основном за счет водородной деполяризации алюминий и его сплавы, коррозионностойкие и конструкционные стали, никель и никелевые сплавы, медь, медные сплавы подвергаются коррозии с кислородной деполяризацией. Растворимость кислорода в морской воде ограничена. При протекании коррозии с кислородной деполяризацией очень часто скорость катодного процесса определяется диффузией кислорода и поверхности металла. В таких условиях перемешивание среды или перемещение поверхности металла относительно среды является важным фактором, который может оказать существенное влияние на характер коррозии. При перемешивании скорость катодного процесса будет уве-личиваться и металл из пассивного состояния может переходить в пробойное состояние (см. рис. 18).  [c.43]


Смотреть страницы где упоминается термин Розенфельд : [c.374]    [c.425]    [c.181]    [c.192]    [c.197]    [c.338]    [c.489]    [c.209]    [c.81]    [c.202]    [c.372]    [c.414]    [c.63]    [c.428]    [c.436]    [c.437]    [c.331]    [c.209]    [c.209]    [c.143]    [c.177]    [c.177]    [c.177]    [c.177]    [c.177]    [c.310]    [c.472]    [c.352]    [c.489]    [c.153]    [c.209]    [c.177]   
Машиностроители Сибири в условиях развитого социализма (1959-1970 гг.) (1982) -- [ c.12 , c.212 , c.219 ]

Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.12 , c.84 , c.343 ]

Самолетостроение в СССР 1917-1945 гг Книга 2 (1994) -- [ c.59 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте