Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Взаимосвязь продольного и поперечного движений

Параметр определяет взаимосвязь продольного и поперечного движений несущего винта при частоте махового движения  [c.710]

Бесшарнирные несущие винты. Рассмотрим несущий винт с относом ГШ или бесшарнирный винт. В обоих случаях собственная частота движения лопасти в плоскости взмаха будет больше частоты вращения винта (v > 1). Основным следствием этого будет момент на втулке, связанный с наклоном плоскости концов лопастей, что сильно увеличивает способность несущего винта создавать моменты относительно центра масс вертолета. При этом также увеличивается взаимосвязь продольного и поперечного движений, но здесь рассматривается только продольное движение. Относ ГШ на шарнирном винте не изменяет коренным образом характер динамики вертолета, хотя с появлением дополнительных моментов на втулке происходит существенное улучшение характеристик управляемости.  [c.727]


ВЗАИМОСВЯЗЬ ПРОДОЛЬНОГО И ПОПЕРЕЧНОГО ДВИЖЕНИИ  [c.737]

Вертолет с двумя несущими винтами по динамике имеет отличия от одновинтового. Двухвинтовой вертолет соосной схемы ведет себя как одновинтовой, у которого полностью отсутствует взаимосвязь продольного и поперечного движений. В этом случае не рулевой винт, а крутящие моменты несущих винтов создают управляющие и демпфирующие моменты по рысканию (разд. 15.1). Наиболее распространенной схемой двухвинтового вертолета является продольная, в которой несущие винты разнесены в продольном направлении на (1,5 1,8) , что соответствует перекрытию их дисков на 20—50 %. Вертолет продольной схемы на висении симметричен относительно попе-  [c.739]

Продольная скорость втулки Хв приводит к возникновению силы Сн в плоскости вращения, противодействующей движению, и соответствующего момента тангажа, определяющего устойчивость вертолета по скорости. Аналогично поперечная сила Су, возникающая вследствие поперечной скорости ув, создает момент крена, подобный моменту крена на самолете вследствие V-образности крыла. Таким же образом несущий винт реагирует на продольные и поперечные порывы ветра. Угловая скорость вертолета приводит к возникновению момента тангажа вследствие отставания плоскости концов лопастей от оси вала, и аналогично угловая скорость крена создает момент крена. Эти моменты демпфируют угловое движение вертолета. При увеличении частоты v > 1 в случае применения разноса ГШ или бесшарнирных лопастей происходит, во-первых, увеличение моментов на втулке (особенно для бесшарнирных лопастей) и, во-вторых, появление взаимосвязи между продольным и поперечным движениями (поскольку 0).  [c.712]

В работе [М. 120] рассмотрена связь продольного и поперечного движений и найдено, что одно из колебательных движений стабилизируется, а другое — дестабилизируется. Если момент инерции по крену мал, то движение крена при учете взаимосвязи становится несколько более устойчивым.  [c.738]

Сравнение характеристик динамики продольного и поперечного движений вертолета с учетом и без учета взаимосвязи между ними на режиме висения  [c.739]

Заметим, что, распространяясь в безграничной упругой среде, поперечные волны не генерируют продольных, и наоборот. Однако в среде с границей продольные и поперечные волны взаимосвязаны, что, например, видно из (4.22). При наличии второй границы образуются еще отраженные волны. Продемонстрируем это на задаче о движении сосредоточенной силы Р со сверхзвуковой  [c.292]


Способность бесшарнирного винта передавать на вертолет большие моменты на втулке оказывает сильное влияние на управляемость. В противоположность этому на шарнирном несущем винте создается сравнительно небольшой момент на втулке вследствие относа ГШ, приблизительно сравнимый с моментом относительно центра масс вертолета при наклоне равнодействующей на винте. Бесшарнирный винт обеспечивает более высокую эффективность управления, чем шарнирный, и еще более высокое демпфирование по тангажу и крену. Большое демпфирование связано с повышенной чувствительностью к порывам ветра, так что скоростной вертолет с бесшарнирньш винтом часто нуждается в какой-либо автоматической системе управления для подавления влияния порывов ветра. Сильно увеличивается также взаимосвязь продольной и поперечной реакций винта на отклонение управления правда, ее можно в удовлетворительной степени уменьшить надлежащим выбором угла опережения управления. Однако существенная взаимосвязь продольного и поперечного движений в переходных процессах и при воздействии внешних возмущений остается. Значительно большая по сравнению с шарнирным винтом неустойчивость по углу атаки бесшарнирного винта требует для предотвращения ухудшения управляемости установки стабилизатора большой площади или автоматической системы управления. Бесшарнирный  [c.773]

Уравнения движения. Движение вертолета на режиме висения разделяется на вертикальное и продольно-поперечное. При этом продольное и поперечное движения могут анали-, зироваться по отдельности. Такое разделение вполне корректно для двухвинтовых вертолетов соосной схемы изолированными также являются поперечное движение вертолета продольной схемы и продольное движение вертолета поперечной схемы. Для одновинтового вертолета (с рулевым винтом) основные характеристики управляемости в продольном и поперечном движениях получены при раздельном их анализе, хотя в разд. 15.3.6 рассмотрена и полная модель вертолета с учетом взаимосвязи этих движений.  [c.716]

В табл. 15.4 приведено сравнение корней, полученных без учета и с учетом взаимосвязи для примера, рассмотренного в разд. J5.3.4.6 и 15.3.5. Взаимосвязь в этих случаях влияет в направлении стабилизации поперечных и дестабилизации.продольных колебаний, а также несколько изменяет их частоту. Действительные корни продольного и поперечного движений достаточно точно определяются без учета вза имосвязи, особенно для бесшарпирного несущего винта. Вообще говоря, уравнения движения, не учитывающие взаимосвязь, дают вполне приемлемое качественное описание динамики системы, а для большинства ее параметров и достаточно точную количественную оценку. Однако, судя по собственным векторам, вследствие взаимосвязи появляются существенные составляющие от поперечного движения в продольном и от продольного в поперечном.  [c.739]

В невращающихся осях инерционная взаимосвязь между движениями несущего винта и его вала сильно ограничена. Угол конусности реагирует на вертикальное ускорение, циклический шаг — на движения тангах<а и крена, угол качания — на угловое ускорение рыскания, а циклические составляющие угла качания — на продольное и поперечное ускорения втулки. Вообще отсутствует влияние движения вала на безреакционные степени свободы (с номерами 2с, 2s, пс, ns, Nj2).  [c.403]

При взлете с боковым ветром после отрыва начинается снос самолета. Для борьбы со сносом производится доворот против ветра, чтобы ввести поправку в курс и обеспечить прямолинейность полета в заданном направлении взлета. Если при этом будет допущено скольжение, то в первые секунды после отрыва, когда углы атаки большие и поперечная управляемость ухудшена, возможно заметное проявление взаимосвязи между продольным и боковым движением, которое при неожидаино1М возникновении может оказаться опасным.  [c.325]

Более точные исследования [23] показывают, что рассмотрение эквивалентного бруса вместо винтового стержня для продольных, крутильных и поперечных колебаний при целом числе полувитков дает погрешность порядка tg г з при определении собственных функций и порядка tg ijj при определении собственных частот для дробного числа полувитков погрешность частоты имеет порядок tgxjj. Вынужденные колебания под действием продольной или поперечной периодических сил, а также крутящего момента, взаимосвязаны и обнаруживают резонансные свойства в любом направлении, независимо от вида возмущения. При несовпадении направлений возмущения и движения порядок амплитуды колебаний равен tg г з.  [c.58]


Для режима висения ( i = О, пв = 0) уравнения сводятся к полученным в разд. 15.3.1. При полете вперед возникают инерционные силы, обусловленные центробежными ускорениями при повороте вектора скорости вертолета относительно связанных осей. Это в основном вертикальное ускорение, вызываемое угловой скоростью тангажа, и поперечное ускорение, создаваемое угловой скоростью рыскания (заметим, что эти силы связывают вертикальное и продольно-поперечное движения). Поскольку задачей анализа является определение характеристик управляемости вертолета при полете вперед, необходимо ввести еще ряд допущений. Будем пренебрегать инерционной взаимосвязью крена и рыскания (/л 2 = 0), а также малыми величинами HtganB и g sinans. Не будем учитывать малые балансировочные эйлеровы углы, что упрощает выражения для угловых скоростей р = (fB, q = г = ifB-  [c.749]


Смотреть страницы где упоминается термин Взаимосвязь продольного и поперечного движений : [c.706]    [c.767]   
Смотреть главы в:

Теория вертолета  -> Взаимосвязь продольного и поперечного движений



ПОИСК



Движение поперечное

Продольное движение



© 2025 Mash-xxl.info Реклама на сайте