Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вязкость дисперсных систем

Реология - совокупность методов исследования течения и деформации реальных сред, например, жидкостей, обладающих структурной вязкостью, дисперсных систем, обладающих пластичностью. В реологии рассматриваются процессы, связанные с необратимыми остаточными деформациями тел (последействие, ползучесть и др.), развивающимися во времени.  [c.153]

ГЛАВА 9. ВЯЗКОСТЬ ДИСПЕРСНЫХ СИСТЕМ  [c.498]

Гл. 9. Вязкость дисперсных систем  [c.500]

Первоначальные исследования в области реологии, относящиеся ко второй половине прошлого столетия и связанные с именами Максвелла, Фойгта, Кельвина, Больцмана, были посвящены течению весьма вязких жидкостей и дисперсных систем (коллоидных растворов, суспензий). Отправным пунктом этих исследований послужила идея объединения в одной модели свойств упругости и вязкости. Наибольшее развитие получила теория линейных вязко-упругих тел, т. е. таких, для которых реологическое соотношение имеет вид  [c.753]


В результате смешивания керамического порошка с термопластичным пластификатором при температуре несколько более высокой, чем температура его плавления, образуется так называемый литейный шликер. Шликер представляет собой структурированную дисперсную систему, которую можно охарактеризовать пластической вязкостью и предельным напряжением сдвига. Значение этих показателей зависит от свойств дисперсионной среды и дисперсной керамической фазы, а также от их возможного взаимодействия.  [c.57]

Цементное тесто представляет собой концентрированную водную суспензию, обладающую характерными свойствами структурированных дисперсных систем прочностью структуры, пластической вязкостью, тиксотропией. В цементном тесте твердые частицы суспензии связаны вандерваальсовыми силами и сцеплены вследствие переплетения покрывающих их гидратных оболочек. Структура цементного теста разрушается при механических воздействиях (перемешивании, вибрировании и т.п.), но после прекращения воздействий структурные связи в системе вновь восстанавливаются. При твердении объем теста большинства вяжущих материалов изменяется цементного, известкового — уменьшается гипсового — увеличивается. Исключение составляют специальные расширяющиеся и безусадочные цементы.  [c.282]

Другим примером использования релаксации напряжений для оценки трудно измеряемых реологических параметров служит работа [39], в которой была показана возможность определения вязкости при очень низких скоростях деформации на основе измерения релаксации напряжения при постоянной деформации. В связи с этим была предпринята упрощенная, но успешная попытка сопоставления для пластичных дисперсных систем зависимости от скорости деформации, с одной стороны, измеряемой обычными методами эффективной вязкости т) , с другой стороны, величины, имеющей размерность вязкости п определяемой по формуле  [c.109]

Для пластичных дисперсных систем характерно, что в определенном сравнительно узком интервале изменения напряжения сдвига происходит огромное изменение эффективной вязкости и, следовательно, бывает чрезвычайно резко выражена ее аномалия. Это происходит при напряжениях сдвига, превосходящих нижний предел прочности (предел текучести). В работе [1 ] было показано, что при напряжениях сдвига, превосходящих предел текучести водной пасты бентонита, их увеличение примерно в два раза вызвало снижение эффективной вязкости в миллион раз. В опытах В. П. Павлова с пластичными смазками при достижении предела текучести эффективная вязкость уменьшилась на 4—5 десятичных порядков, что иллюстрируется данными, приведенными на рис. 59, для смазки солидола при комнатной температуре.  [c.126]


Как указывалось выше, рис. 60 характеризует обобщенную деформационную характеристику пластичных дисперсных систем. В зависимости от их природы нижний и верхний ньютоновские режимы течения осуществляются при разных скоростях деформаций или оказываются недостижимыми с разной резкостью может проявляться аномалия вязкости различную протяженность по скоростям деформаций могут иметь области постоянных значений T,t, и т. д. В связи с этим очень важно отметить, что существуют системы, занимающие переходное положение от типичных пластичных дисперсных систем к неньютоновским жидкостям.  [c.130]

В настоящее время отсутствуют экспериментальные методы, которые позволяли бы всесторонне исследовать коагуляционные структуры дисперсных систем. Поэтому основным методом теоретического исследования структурированных систем является моделирование. В рамках приведенной ниже теории эффективной вязкости для описания структуры печатной краски предполагается модель, основанная на теории фракталов и теории перколяции.  [c.251]

Показано, что вязкость дисперсных систем, таких, как суспензии зерен рисового крахмала в четыреххлориотом углероде и парафине, снижается с увеличением скорости сдвига [635]. Было, однако, показано [334], что суспензии сферических полимерных частиц в водных растворах глицерина обладают свойствами ньютоновской жидкости. Что же касается влияния скорости сдвига на вязкость высокополимерных растворов [312], то оно заметно при степени полил1еризацпи более 2000. Авторы работы [368] считают, что указанное влияние градиента скорости обусловлено дефорд1ациеп частиц под действием напряжений сдвига, их пористостью, а также преимущественной ориентацией. В работах [383, 454, 456] предложена модель, согласно которой частицы золя увлекаются вязким потоком, в котором существуют напряжения сдвига, причем соответствующее изменение конфигурации системы отвечает принципу наименьшего действия. Таким образом, подразумевается существование сил, стремящихся переместить частицы с линий тока в направлении уменьшения градиента скорости. В результате формируется такой профиль концентрации частиц, максимум которого находится в области самого малого градиента скорости (разд. 2.3).  [c.198]

Вязкость дисперсных систем и структурообразование. — В кн. Совещание по вязкости жидкостей и коллоидных растворов. 1. М.—Л., АН СССР, 1941, с. 361—380, рис., табл. Литература 26 назв.  [c.68]

РЕО.иОГИЯ — наука о течении и деформации реаль-шх сплошных сред (как, нанр., неныотоновских жид- остей со структурной вязкостью, дисперсных систем, обладающих пластичностью). Р. рассматривает  [c.435]

Следует отметить неприменимость получае-мых однозначных зависимостей для расчета свойств неоднородных систем, например смесей, состоящих из твердых углевидных частиц, взвешенных IB жидкости. Как известно [Л. 152, 180], степень дисперсности частиц во MHOFOM определяет свойства подобных неоднородных систем (суспензий, коллоидных растворов, эмульсий). В частности, вязкость подобных систем не подчиняется законам вязкости Ньютона. Коэффициент вязкости подобных систем не является постоянным, а зависит от градиента скорости, при этом с увеличением градиента скорости вязкость уменьшается.  [c.229]

Комплексное исследование коллоидной структуры углеводородных сред ЭПР и ЯМР методами подтверждает результаты электронной спектроскопии. Радиоспекгральными методами показано, что коэффициент поглощения отражает вклад дисперсной фазы асфальто-смолистых веществ в формирование вязкости нефтяных дисперсных систем. Точность и воспроизводимость спектроскопических измерений динамической вязкости на основе (1) для тяжелых топлив и средних нефтяных фракций адекватны измерениям на вискозиметрах.  [c.73]

В сборнике Свойства течений дисперсных систем [20] под ред. Германса имеется интересная статья Садрона Разбавленные растворы непроницаемых жестких частиц , в которой довольно подробно рассматриваются гидродинамические вопросы вязкости суспензий.  [c.499]

Основное внимание в настоящей книге уделяется измерению вязкости на ротационных вискозиметрах. Вместе с тем в ней кратко излагаются основные принципы измерения на ротационных приборах упругих, прочностных, релаксационных и других реологических характеристик материалов, что позволяет рассматривать ее как обзор, посвященный реометрии, основанной на использовании ротационных приборов. В связи с этим в книге дается определение важнейших понятий реологии и сообщаются краткие рекомендации по обработке результатов реологических измерений. Изложение этих вопросов ведется на основе данных, известных для упругих жидкостей и пластичных дисперсных систем, которые являются важнейшими типами материалов, изучаемых реологическими методами. Типичными представителями упругих жидкостей являются растворы и расплавы полимеров, а для пластичных систем — пасты, подобные консистентным смазкам.  [c.4]


С другой стороны, у пластичных дисперсных систем даже в условиях ползучести, следовательно, при очень низких напряжениях могут происходить изменения структуры, а именно совершается их упрочнение [21 ]. Оно проявляется не только, как указывалось выше, в значительном уменьшении их способности давать необратимые деформации, но также и в некотором снижении величии обратимых деформаций. Скорость процесса упрочнения повышается с увеличением х, соответственно уменьшается время достижения предельно упрочненного состояния. Под влиянием упрочнения при т = onst вязкость необратимой ползучести увеличивается до некоторого постоянного значения, которому отвечает установившийся режим натекания необратимых деформаций. В зависимости от величины т вязкость может быть как ньютоновской, так и неньютоновской. Отсюда вытекает очень важное заключение, что постоянная вязкость может описывать такую совокупность состояний материала, достижение которых в процессе деформирования, однако, сопряжено при каждом т = onst с изменением его структуры. Сказанное можно обобщить еще далее. Дело в том, что известны такие пластичные дисперсные системы, которые при невысоких напряжениях сдвига являются линейными телами как по отношению к чисто упругим деформациям, так и по отношению к необратимой ползучести, хотя они упрочняются при деформиро. 102  [c.102]

Из рассмотрения рис. 60 виден ряд существенных различий между неньютоновскими жидкостями и пластичными дисперсными системами. Во-первых, у пластичных дисперсных систем нелинейность зависимости у (т) наблюдается при таких скоростях деформаций (y > унн) и напряжениях сдвига (т > т ), при которых не проявляется разрушение структуры материалов. Во-вторых, у этих систем разрушение структуры может быть выражено столь резко и происходит так интенсивно, что в широком интервале скоростей деформаций максимальное напряжение сдвига не зависит от величины у или слабо повышается с ее увеличением. Эта особенность прочностных свойств пластичных дисперсных систем обусловлена прежде всего хрупкостью их структурного каркаса. В-третьих, отвечающее каждому определенному значению у предельное разрушение структуры может так усиливаться с увеличением у, что напряжения сдвига на установившихся режимах течения не только отстают от увеличения у, как-то наблюдается при аномалии вязкости, но значительно снижаются при возрастании у. Это явление сверханомалии, впервые изученное в работах Г. В. Виноградова, В. В. Синицына и В. П. Павлова, иллюстрируется на рис. 60 ветвью АС кривой A DEFG. В-четвертых, на установившихся режимах течения при низких скоростях деформаций сопротивление вязкого течения дисперсионной среды и перемещения относительно нее дисперсной фазы могут не зависеть от скорости деформации (участок D кривой A DEFG). С увеличе-  [c.128]

Рис. 61. Графики, иллюстрирующие явление сверханомалии вязкости у пластичных дисперсных систем Рис. 61. Графики, иллюстрирующие явление сверханомалии вязкости у пластичных дисперсных систем
У пластичных дисперсных систем могут сочетаться п-эффект, сверханомалия и аномалия вязкости различной интенсивности таким образом, что при сверхнизких и низких скоростях деформаций проявляется п-эффект и ползучесть у этих систем наблюдать не удается, а с повышением скорости, когда усиливается разрушение структур системы, в объеме обнаруживается сверханомалия, переходящая затем в аномалию вязкости.  [c.131]

Вискозиметр В. Хейнца [38]. Этот прибор под маркой Ротовиско выпускается фирмой Хааке в Западном Берлине. Вискозиметр работает по методу Q = onst. Он пригоден для измерения вязкости как ньютоновских жидкостей, так и пластичных дисперсных систем. На нем возможны измерения вязкостей расплавов полимеров и стекол.  [c.177]

Пластовискозиметр ПВР-2. Этот прибор разработан в Институте нефтехимического синтеза АН СССР. В нем используется измерительный узел конструкции В. П. Павлова. Выпускается СКВ Промприбор в г. Ленииакане (Арм. ССР). Он предназначен для определения вязкости и других реологических характеристик дисперсных систем и растворов полимеров. Во вращение приводится внутренний цилиндр, наружный связан с тензометрическим измерителем моментов. Возможно также использование торсионов. Необходимое для исследования количество вещества составляет около 1 мл. Диапазон температур от —100 до 350° С (при температурах ниже —50° С необходима защита верхней части измерительного узла от конденсации влаги, при температурах выше 120° С должны использоваться жаростойкие прецизионные подшипники) = 5,0 сж Нц = 0,500 Rei= 0,495 Rei = 0,490 см (для рифленых внутренних цилиндров вз = 0.480 см). Пределы измерения вязкости от 1 до 10 н-сек-м скорости деформации от 10 до 10 напряжения сдвига от 3-10" до 10 н-м .  [c.195]


Смотреть страницы где упоминается термин Вязкость дисперсных систем : [c.417]    [c.171]    [c.383]    [c.55]    [c.36]    [c.106]    [c.132]   
Смотреть главы в:

Гидродинамика при малых числах Рейнольдса  -> Вязкость дисперсных систем



ПОИСК



Дисперсная

Системы дисперсные



© 2025 Mash-xxl.info Реклама на сайте