Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Детали и рабочая среда газовых турбин

Отмечена целесообразность применения этого сплава для деталей (рабочее колесо, лопасти) газовых турбин, изготовления пружин, работающих при повышенных температурах (500—600 °С) Б агрессивных средах.  [c.231]

К числу сильно нагруженных деталей относятся также диски газовых турбин, которые, как и рабочие лопатки, подвержены совместному воздействию нагрева и механических нагрузок. Нагружение дисков турбомашин и их прочность подробно рассмотрены в разд. 11.4. Отметим, что среди большого числа факторов нагружения дисков следует особо выделить растягивающие усилия от центробежных сил массы самого диска и закрепленных на нем рабочих лопаток, а также усилия растяжения - сжатия в диске, обусловленные его неравномерным прогревом вдоль радиуса. Данные факторы нагружения являются опасными, так как вызываемые ими напряжения достигают очень больших значений и,кроме того, распределяются почти равномерно по толщине диска. Последнее обстоятельство создает условия, при которых невозможно перераспределение напряжений по толщине диска с ростом нагрузки. При расчете статической местной прочности диска указанные факторы нагружения рассматриваются как основные.  [c.262]


Наиболее широко покрытия на суперсплавах применяются на узлах и деталях высокотемпературных секций газовых турбин, таких как камеры сгорания, рабочие и направляющие лопатки. Необходимость в таких покрытиях возникла в 1950-х гг. при производстве авиационных двигателей, когда стало очевидно, что требования к составу материала для улучшения его высокотемпературной прочности и достижения оптимальной степени зашиты от воздействия высокотемпературной окружающей среды несовместимы. Повышение рабочей температуры вызывало интенсивное окисление никелевых и кобальтовых суперсплавов, применявшихся для изготовления рабочих и направляющих лопаток турбин. Необходимость решения проблемы окисления суперсплавов привела к разработке алюми-нидных диффузионных покрытий, некоторые из которых применяются до сих пор.  [c.89]

Применение внутренней изоляции и эффективной системы воздушного охлаждения деталей турбогруппы позволило резко снизить расход жаропрочных легированных сталей и одновременно повысить надежность турбин. Эффективная тепловая изоляция газовой турбины предотвращает потери тепла в окружающую среду для современных стационарных газовых турбин эти потерн не превышают 1% от тепла, вносимого в установку с топливом. На охлаждение деталей турбогруппы расходуется около 2 т/ч воздуха. Воздухом охлаждаются стяжки 19 (см. рис. 99) корпуса турбины. Снаружи они защищены слоем изоляции, а внутри охлаждаются воздухом, поэтому их температура не превышает 350— 370° С. Для охлаждения дисков ТВД п хвостов рабочих лопаток в корпусе турбины расположена воздухоподводящая система Р, 12 и 18, через которую к диску высокого давления с двух сторон и к корням направляющих лопаток подводится охлаждающий воздух. Воздух к камерам подводится от осевого компрессора по трубкам 9, 12, 18. Для выхода воздуха в проставке имеется ряд отверстий.  [c.230]

Рабочая среда воздействует на металл паросиловых и газотурбинных установок в разных формах. Главнейшим видом этого воздействия являются непосредственные химические реакцик между поверхностью металла и рабочей средой, т. е. х и м и ч е окая или газовая (поскольку коррозионной средой являются газы) коррозия, приводящая с течением времена к уменьшению живого сечения металлических деталей и тем самым к уменьшению их прочности. Наряду с химической (газовой) коррозией в работе турбинных установок возможны и проявления электрохимической коррозии, некоторые виды которой, например межкристаллитная коррозия аустенитных сталей, не только вызывают разрушение поверхности металла, но и сопровождаются более глубокими изменениями свойств металла, приводя его к охрупчиванию и потере механической прочности. В газовых турбинах, работающих на мазуте, кроме того, возможны и некоторые специфические виды коррозии, как например, ванадиевая коррозия, которую можно рассматривать как особый вид жидкостной коррозии, поскольку она вызывается действием расплавленной золы горючего.  [c.322]


В отношении эксплуатационной экономичности положение обоих видов двигателей также различно. Экономичность газовых турбин в настоящее время ниже, чем у паровых турбин, но, 1как уже было отмечено, к. п. д цикла, по которому работает двигатель, определяется среди других факторов начальными и конечными параметрами ра(бочего тела. Паровые турбины и в этом отношении подошли к своим предельным возможностям. Особенности технологического процесса работы газовой турбины позволяют повышать начальную температуру рабочего тела с введением охлаждения тех деталей, которые работают в области высоких температур. Научно-исследовательские институты работают над решением проблемы высокотемпературной газовой турбины.  [c.162]

Газовые турбины могут быть выполнены и, как правило, выполняются для работы при более высокой температуре рабочей среды (газа) по сравнению с максимальной температурой пара в паровой турбине. Такая особенность обусловлена двумя обстоятельствами. Во-первых, наиболее горячие элементы ГТУ — лопатки газовой турбины и детали камеры сгорания — сравнительно легко могут быть выполнены охлаждаемыми (см. 13.2—13.4). Так, температура рабочей среды (газа) перед газовой турбиной может быть выше максимальной температуры металла охлаждаемых сопловых лопаток первой ступени газовой турбины на несколько сот градусов, в то время как в паровой турбине температура пара на входе в турбину должна быть на несколько десятков градусов токе максилшльной температуры металла пароперегревателег1 котла. Во-вторых, для горячих деталей ГТУ могут быть применены и применяются высокожаропрочные материалы, использование которых для пароперегревателей котлов, а также и для главных паропроводов ПТУ нерацио-  [c.397]

В газотурбинных двигателях (ГТД) наиболее нагруженными деталями являются рабочие лопатки компрессора и турбины. Они работают в условиях высоких и быстросменяющихся температур и агрессивной газовой среды. В материале лопатки возникают большие напряжения растяжения от центробежных сил и значительные вибрационные напряжения изгиба и кручения от газового потока, амплитуда и частота которых меняются в широких пределах. Быстрая и частая смена температуры приводит к возникновению в лопатках значительных термических напряжений.  [c.3]

Одна из основных областей применения этих сталей - энергетическое машиностроение (трубопроводы, детали и корпуса газовых и паровых турбин и т.д.), где рабочие температуры достигают 750 °С и выше. Жаростойкие стали и сплавы обладают стойкостью против химического разрушения поверхности в газовых средах при температурах до 1100. .. 1150 °С. Обычно их используют для деталей слабонафуженных (нагревательные элементы, печная арматура, газопроводные системы и т.д.). Высокая окалиностойкость этих сталей и сплавов достигается легированием их алюминием (до 2,5 %) и вольфрамом (до 7 %). Эти легирующие элементы и кремний способствуют созданию прочных и плотных оксидов на поверхности деталей, предохраняющих металл от непосредственного контакта с газовой средой.  [c.346]


Смотреть страницы где упоминается термин Детали и рабочая среда газовых турбин : [c.63]    [c.336]    [c.541]    [c.281]   
Смотреть главы в:

Суперсплавы II Жаропрочные материалы для аэрокосмических и промышленных энергоустановок Кн1  -> Детали и рабочая среда газовых турбин



ПОИСК



Газовые среды

Рабочие среды

Турбина газовая

Турбины Газовые турбины

Турбины газовые



© 2025 Mash-xxl.info Реклама на сайте