ПОИСК Статьи Чертежи Таблицы Детали и рабочая среда газовых турбин из "Суперсплавы II Жаропрочные материалы для аэрокосмических и промышленных энергоустановок Кн1 " Детали горячей зоны современного авиадвигателя представлены на рис. 2.7. Ниже дано описание камеры сгорания, узлов с вращающимися лопатками и узлов с неподвижными лопатками. [c.54] В камере сгорания — сосредоточии самых высоких температур — Т 1650 °С. На рис. 2.7 показана камера сгорания кольцевого типа. Между внешней и внутренней стенками заключена часть кольцевого пространства, симметричного относительно оси двигателя. Выходя из компрессора, воздух проходит сквозь это пространство, смешиваясь здесь с топливом. Смесь поджигается. Топливо вводится через форсунки, расположенные в конце камеры сгорания. Однажды подожженная искрой, топливовоздушная смесь продолжает гореть до тех пор, пока не будет перекрыто топливо. Управление тягой двигателя осуществляют главным образом за счет управления подачей топлива в камеру сгорания. К моменту, когда наиболее разогретый газ достигает лопастей стационарных лопаток первой ступени турбины, он уже смешан с избыточным охлаждающим воздухом компрессора и, разбавленный таким образом, поступает в турбину при температурах от 950 °С (в газовых турбинах первого поколения) до 1500 °С (в некоторых современных установках). Кольцевая камера сгорания осевой конструкции, изображенная на рис. 2.7, изготовлена из точеных колец суперсплава. В утолщенных сечениях, расположенных в определенном порядке по наружной и внутренней стенкам, имеются охлаждающие полости, сквозь которые продувается нагнетаемый компрессором воздух. Образованный таким образом тонкий слой относительно холодного воздуха в совокупности с конвекционным охлаждением защищают материал камеры сгорания от нагрева горячим газом. Разница в температуре металла и пламени может существенно превышать 850 °С. Тепловое излучение от пламени к более холодному материалу камеры сгорания весьма значительно. На внутреннюю поверхность камеры сгорания может быть нанесено теплозащитное покрытие. Оно образует теплоизолирующий и отражающий слой. [c.55] В истории конструирования камер сгорания инженеры постоянно имели дело с обширными площадями тонкого материала, контактирующего с раскаленной средой. Сгорание топлива может вызывать периодическое колебание давления, порождая проблемы малоцикловой усталости. Конструкторы решили избежать их, повысив жесткость и напряженность узлов камеры сгорания и тем самым подавив возможные собственные низкочастотные вибрации, которые процесс сгорания мог бы возбудить. [c.57] Коль скоро камера сгорания содержит самые горячие газы, она должна выдерживать температурные перепады, возникающие при пуске и останове турбины. Механические напряжения, да и особенности охлаждения сдерживают свободное тепловое расширение в узлах камеры сгорания. В результате возникают термические напряжения и процесс малоцикловой усталости. Конструкторам камеры сгорания, рассматривающим механические аспекты ее работы, приходится балансировать в своих решениях между необходимостью подавления многоцикловой усталости и свободой термического расширения. Последняя должна быть достаточно большой, иначе недопустимо малой окажется долговечность в режиме малоцикловой усталости. [c.57] Стационарные направляющие лопатки первой ступени турбины расположены у выхода камеры сгорания и предназначены для того, чтобы ускорить горячий рабочий поток и развернуть его для входа в следующую, роторную часть под соответствующим углом. Через направляющие, или сопловые лопатки первой ступени газы проходят с самой высокой скоростью. Здесь температура газов снижается от температуры газового факела только за счет смешения с воздухом, поступающим от компрессора специально для этого смешения и охлаждения. На следующих ступенях температура рабочего потока понижается только за счет совершения работы. При такой рабочей среде требуется принудительное охлаждение металла сопловых лопаток первой ступени. Сопло турбины высокого давления (см. рис. 2.7) - это сегментная сборка, привинченная к камере сгорания. Конвекция и отражение пламени в сочетании с пленочным охлаждением обеспечивают необходимое ограничение его температуры. [c.58] Охлаждение сопловых лопаток первой ступени необходимо, поскольку температура поступающих в нее газов может постоянно превышать температуру плавления металла конструкций. Равномерное охлаждение по всей конструкции сопла, хотя и является одной из целей конструктора, по ряду причин практически неосуществимо. В результате из-за температурных градиентов возникают термические напряжения, вызывающие малоцикловую усталость и усталостное растрескивание. [c.58] В связи со спецификой своего расположения в двигателе сопловые лопатки последующих ступеней (в отличие от первой ступени) не могут быть закреплены и на внутренней, и на внешней стенке сопла. Поэтому напряжения от аэродинамических нагрузок в них выше, и конструктор должен остерегаться ползучести материала внешней стенки и направляющей лопатки, ибо в результате ползучести лопатки по внутреннему диаметру сопла могут непрерывно отклоняться в направлении рабочего потока. В отношении материала сопловых лопаток последующих ступеней главным требованием (помимо тех, что предъявляют к сопловым лопаткам первой ступени) является хорошее сопротивление ползучести. [c.59] В целом разность температур между газами и рабочими лопатками ниже, чем в рассмотренной выше системе сопловых лопаток. Это связано со скоростью смещения лопаток относительно рабочих газов и добавлением в их поток более холодного воздуха. [c.60] В связи с вращением лопатки испытывают действие напряжений от центробежных нагрузок. Центробежное усилие, приложенное к единице массы на полувысоте рабочей лопатки, в 13-90 тыс. раз превышает силу тяжести. Напряжения от центробежных сил находятся в диапазоне от 69 МПа в среднем сечении лопастей лопаток первой ступени промышленных турбин до 277 МПа в сечении корневой части интенсивно охлаждаемых рабочих лопаток турбины авиадвигателей и последней ступени промышленных газовых турбин. Напряжения около 17 МПа возникают на последних ступенях турбовентиляторов авиадвигателей. Стремясь извлечь максимум энергии рабочего потока в промышленных газотурбинных установках, размеры кольцевой зоны последней ступени делают больше, чем в турбинах авиадвигателей. Поэтому у первых напряжения в корневом сечении рабочих лопаток обычно выше, чем у последних. Сочетание повышенных температур и напряжений порождает проблему ползучести рабочих лопаток и делает ее предметом главной заботы конструкторов, которые обычно выбирают для изготовления лопаток один из сплавов, обладающих наиболее высоким сопротивлением ползучести. [c.60] Вместе с вращающимся турбинным диском рабочие лопатки перемещаются в пространстве, где расположены направляющие лопатки, камера сгорания, система опор. В таких условиях результирующие усилия, приложенные к лопаткам, колеблются, и это может породить явления многоцикловой усталости. Чтобы их избежать, конструкторы придают лопаткам форму, исключающую, насколько возможно, резонанс этих колебаний с собственными колебаниями лопаток. Нередко оказывается невозможным избежать вибраций во всем диапазоне рабочих скоростей вращения, и конструкторы вынуждены применять виброгасящие устройства или ограничиваться предотвращением лишь наиболее опасных резонансных ситуаций. [c.60] Воздух и топливо, поступающие в двигатели, особенно вертолетных и наземных установок, содержат небольшие количества Na, К, V и РЬ, которые вступают в реакцию суль-фидообразования и, таким образом, вызывают коррозию лопастей лопаток. Уже при концентрации порядка Ю % (ат.) эти элементы способны привести к деструкции набора турбинных лопаток в течение немногих часов. [c.61] Таким образом, материал рабочих лопаток турбин должен надежно сопротивляться коррозии и окислению или для его защиты должно существовать надежное покрытие. Требуются достаточно высокие сопротивления усталости и ползучести, активному растяжению (предел прочности), вязкость. В настоящее время необходимы и хорошие литейные свойства. Возможность локальной обработки резанием к числу обязательных требований не относится, поскольку ее задачи успешно решают посредством шлифования, электрохимического или электроэрозионного воздействия. [c.62] На турбинные диски, к которым доветалевым замком прикреплены рабочие лопатки, действуют радиальные центробежные растягивающие усилия. В результате вращения диска они возникают в его теле и непосредственно, и путем передачи от лопаток. Дополнительные напряжения создаются из-за постоянно существующих колебаний температуры диска. Температурный режим последнего определяется действием охлаждающего воздуха и воздуха, движущегося в потоке рабочих газов, а также любыми утечками рабочего потока в пространство над и под дисковым ободом. В практических условиях температура диска близка, и если выше, то ненамного, к температуре на выходе компрессора. Поэтому для дисков выбирают в основном материалы, способные работать при температурах до 670 °С. В промышленных турбинах для этих целей обычно применяют легированные стали, а в авиадвигателях— сплавы типа IN-718. [c.62] Вернуться к основной статье