Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Низкий температурный коэффициент электрического сопротивления

Вместе с тем исследования последних лет показали, что для изготовления термометров сопротивления могут быть использованы некоторые полупроводники, так как их температурный коэффициент электрического сопротивления оказался на порядок выше, чем у чистых металлов, поэтому в настоящее время полупроводниковые термометры сопротивления находят применение при измерении низких температур (1,3... 400 К).  [c.31]


Температурный коэффициент электрического сопротивления монокристалла графита положительный, как и для большинства металлов с преобладающей электронной проводимостью. Для порошков и блоков этот коэффициент отрицательный при не очень высоких температурах. Для составов, соот-ветствующих промышлен-/ 1— ным сортам графита, минимум электросопротивления обусловлен сложениеМ[ двух противоположно действующих факторов с одной стороны, электросопротивление кристаллитов графита с повышением температуры увеличивается, с другой — улучшается контакт между ними. При низких температурах преобладает второй фактор, при высоких — первый I]. Чем выше дисперсность материала, тем больше будет величина электросопротивления при низких температурах и тем глубже будет минимум электросопротивления. Выше 1000° С электросопротивление растет, как правило, пропорционально температуре. На рис, 9 представлены кривые изменения электросопротивления некоторых сортов графита [73]. Аналогичные значения приводят авторы работ [75 237, с. 74]. Для температур выше 1000° С удельное сопротивление можно рассчитать по формуле  [c.38]

Температурный коэффициент электрического сопротивления монокристалла графита положительный, как у большинства металлов. У блоков и порошков при не слишком высоких температурах он имеет отрицательное значение. При дальнейшем повышении температуры он становится положительным. Это обусловлено сложением двух факторов, действующих в противоположных направлениях с одной стороны, сопротивление кристаллов графита с повышением температуры увеличивается, с другой,—улучшается контакт между ними. При низких темпе-  [c.712]

Сплавы для прецизионных резисторов должны обладать низким температурным коэффициентом электросопротивления (желательно приближающимся к нулю), низкой термо-э. д. с. в паре с медью, высокой стабильностью электрического сопротивления во времени. К сплавам, из которых изготовляют переменные резисторы (по обмоткам которых скользят контакты), дополнительно предъявляют требования высокой из-  [c.247]

Материалы для электронагревателей. Обш ие требования, к сплавам для электронагревательных элементов высокая жаростойкость, высокое электрическое сопротивление в сочетании с низким температурным коэффициентом сопротивления, пластичность для промышленного получения изделий различного сортамента (проката, проволоки, ленты) и нагревателей.  [c.527]

Сталь и сплавы с высоким электросопротивлением применяются для изготовления нагревательных элементов электрических и нагревательных приборов. К ним предъявляются следующие основные требования высокое удельное сопротивление при низком температурном коэффициенте высокая окалиностойкость отсутствие структурных превращений при нагреве и охлаждении.  [c.410]


Легирование алюминием приводит к повышению электрического сопротивления при низких температурах. Однако температурный коэффициент зависимости Ар/ДГ у сплавов меньше, чем у нелегированного титана. При этом с увеличением содержания алюминия температур-  [c.24]

Из рассмотренных данных следует, что легирование любым элементом уменьшает температурный коэффициент титановых сплавов по сравнению с нелегированным титаном. При легировании -стабилизаторами это происходит вследствие интенсивного роста электросопротивления при низких температурах и меньшего его роста при высоких температурах легирование Р-стабилиза-торами оказывает обратное действие. Подобная закономерность наблюдается и при многокомпонентном легировании. Важным следствием этого является возможность создания сплавов с постоянным электросопротивлением в широком интервале температур за счет рационального сочетания элементов, повышающих его при низких и понижающих — при высоких температурах. Таким способом в Японии создан сплав Ti—8А1—4Мп с температурным коэффи циентом электрического сопротивления, близким к нулю.  [c.25]

Изменение электрического сопротивления Rt металлов, сплавов и полупроводников. Из металлических преобразователей данного типа (термометров сопротивления) широко распространены преобразователи из платины (диапазон измерения 200—650° С), меди (от —50 до +180° С1, никеля (от —50 до +200° С) и железа (от —50 до +150° С), а из сплавов — бронза (для измерения низких температур). Относительное изменение сопротивления при изменении температуры определяется температурным коэффициентом сопротивления Рг- Для металлов эта величина относительно невелика Рг 1/Т. Конструктивно термометры сопротивления выполняются в виде цилиндрического каркаса из кварца, слюды или фарфора, на который намотана тонкая металлическая проволока или лента.  [c.233]

Для некоторых областей применения, особенно в приборостроении, могут представлять интерес алюминиевые сплавы с особыми физическими свойствами. В настоящее время известно два таких сплава — АМцМ-1 и САС-1. Первый обладает низким температурным коэффициентом электрического сопротивления, второй— пониженным коэффициентом термического расширения.  [c.63]

Сплав АМцМ-1 (табл. 41 и 42) содержит 2—4,5% марганца и приготовляется на чистом алюминии. Его коррозионная стойкость близка к чистому алюминию. Он обладает также высокой технологической пластичностью. Нагрев сплава АМцМ-1 выше 200° С приводит к ухудшению его электрических свойств, что следует иметь в виду в процессе его обработки. Сплав применяют в приборах, где требуется материал с низким температурным коэффициентом электрического сопротивления и где температура не превышает 200° С.  [c.63]

Электрические методы обогрева подразделяются на прямые и косвенные. При прямых методах обогрева электрический ток пропускается непосредственно по телу модели (трубы, пластинь[, ленты рис. 6.22). Этот метод позволяет получать любые требуемые плотности теплового потока q . на поверхности теплообмена (стенке). Наиболее просто реализуется граничное условие = onst, для чего используют трубки или ленты с постоянной толщиной стенки и малыми температурными коэффициентами электрического сопротивления. Заданный закон распределения можно реализовать, применив профилирование толщинь[ стенки. Для обогрева используется переменный ток промышленной частоты от трансформаторов низкого напряжения или постоянный от генераторов низкого напряжения.  [c.391]

Терморезистивная керамика янляется полупроводником с большим положительным значением температурного коэффициента сопротивления. Ее изготовляют на основе твердых растворов титанатов бария и стронция, титаната и станната бария, у которых точка Кюри по сравнению с титанатом бария смещена в сторону низких температур. Вводимые добавки некоторых окислов (ниобия, сурьмы и др.) действуют в этой систше как доноры, способствующие появлению электронной электропроводности. При переходе температуры через точку Кюри происходит существенное изменение структуры материала, вызывающее сильное падение электрической проводимости. Применяются эти материалы в различных устройствах стабилизации тока, ограничения и регулирования температуры и др.  [c.242]


Для производства некоторых видов керамики особое значение имеют их электрофизические свойства, в частности небольшое изменение удельного объемного сопротивления в области температур 1000—1500°С. Благодаря этому свойству представилась возможность применять карбид кремния как материал для производства электронагревательных сопротивлений. Электронагревательные сопротивления из карбида представляют собой так называемые термисторы, т. е. материалы, меняющие свое электрическое сопротивление под влиянием нагрева или охлаждения. Температурная зависимость различных видов карбида кремния и различных типов нагревателей из них представлена на рис. 60. Черный карбид кремния имеет высокое удельное объемное сопротивление при комнатной температуре и отрицательный температурный коэффициент сопротивления. Зеленый благодаря наличию в нем элементарного кремния имеет низкое начальное сопротивление и слабоотрицательный температурный коэффициент, переходящий в положительный при 500— 800°С. Для производства нагревателей используют обе разновидности. Карбидокремниевые нагреватели широко применяют в керамической промышленности для обжига изделий при температуре до 1450°С в окислительной среде. Отечественная промышленность выпускает карбидокремниевые нагреватели в соответствии с ГОСТ 16139—76.  [c.227]

Сплавы прецизионные магнитно-мягкие — это ферромагнитные сплавы, характеризующиеся узкой петлей гистерезиса, они обладают высокой магнитной проницаемостью и малой коэрцитивной силой. Условно считается, что она не превышает 1000—1200 А/м. Сплавы используют в качестве сердечников магнитопроводов, а также магнитных экранов аппаратуры радиосвязи, радиолокации, автоматики и др. По основным магнитным, электрическим, механическим свойствам прецизионные магнитно-мягкие сплавы подразделяют на 12 фупп [195] сплавы с наивысшей магнитной проницаемостью в слабых полях сплавы с высокой магнитной проницаемостью и повышенным удельным электрическим сопротивлением сплавы с высокой магнитной проницаемостью и повышенной индукцией насыщения сплавы с прямоугольной петлей гистерезиса сплавы с высокой индукцией насыщения сплавы с низкой остаточной индукцией сплавы с повышенной деформационной стабильностью и износостойкостью сплавы с заданным температурным коэффициентом линейного расширения (ТКЛР) сплавы с высокой коррозионной стойкостью сплавы с высокой магнитострик-цией термомагнитные сплавы и материалы сплавы для работы на сверхвысоких частотах. Магнитные свойства магнитно-мягких сплавов определяются химическим составом, структурой и текстурой сплава после окончательной термической обработки. Некоторые свойства (намагниченность насыщения, температура Кюри) сравнительно слабо изменяются при небольших изменениях состава и обычно не зависят от условий изготовления и термической обработки. Другие характеристики, такие как проницаемость, коэрцитивная сила, потери на гистерезис, сильно зависят от этих факторов. Поэтому нормируемые ГОСТом и техническими условиями свойства  [c.548]


Смотреть страницы где упоминается термин Низкий температурный коэффициент электрического сопротивления : [c.526]    [c.26]    [c.192]    [c.505]    [c.162]    [c.82]   
Смотреть главы в:

Сплавы для нагревателей  -> Низкий температурный коэффициент электрического сопротивления



ПОИСК



Коэффициент сопротивления

Коэффициент температурный

Коэффициент температурный электрического

Коэффициент электрический

Коэффициент электрического сопротивления температурный

Сопротивление электрическое



© 2025 Mash-xxl.info Реклама на сайте