Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы определения характеристик усталостной прочности

Методы определения характеристик усталостной прочности могут быть разделены на две большие группы  [c.50]

В справочнике впервые на современном научном уровне рассматриваются методы и оборудование для проведения длительных и ускоренных испытаний металлов, деталей машин и механизмов при переменных нагрузках и наложении среды, трения и температуры, используемые при определении характеристик усталостной прочности.  [c.2]

ХАРАКТЕРИСТИКИ УСТАЛОСТНОЙ ПРОЧНОСТИ И МЕТОДЫ ИХ ОПРЕДЕЛЕНИЯ  [c.9]


Следует отметить, что на другие виды разрушения материалов в разной степени влияют масштабный фактор и конструкция детали. Так, при оценке коррозионной стойкости материала результаты, полученные для образца, при сохранении внешних условий могут быть, как правило, использованы для различных деталей. Однако, если испытывается усталостная или коррозионно-усталостная прочность материала, то форма и размеры образцов (которые стандартизованы) оказывают существенное влияние на процесс разрушения, поскольку не только вид нагружения, но и конструкция детали и технология ее обработки (шероховатость поверхности) определяют напряженное состояние и выносливость материала. Как известно, для усталостного разрушения разработаны методы пересчета на другой цикл нагружения, а также методы оценки концентрации напряжения и масштабного фактора. Это позволяет более широко использовать результаты испытания образцов для определения усталостной долговечности деталей различных конструктивных форм. В общем случае можно сказать, что применяемая схема испытания стойкости материала отражает уровень познания физики данного процесса. Чем глубже наши знания в раскрытии закономерностей процесса, тем больше методы испытания стойкости материалов абстрагируются от конструктивных форм изделий и отражают свойства и характеристики самих материалов.  [c.487]

Старение — Теория 94, 98, 99, 106 Статистика математическая — Методы — Применение в теории усталостных разрушений 156—160 --Применение для определения характеристик внешних нагрузок 171 — 175, 178 --Применение для определения характеристик прочности 169—171, 178  [c.825]

Во многих случаях напряжения в конструкции при периодических нагрузках превышают предел усталости. Это относится, например, к деталям авиационных двигателей, лопастям несухцих винтов вертолетов, к ряду объектов военной техники, срок эксплуатации которых очень ограничен различными причинами. В этих случаях важно знать характеристики ограниченной выносливости, которые определяют ресурс детали или конструкции, обеспечивают сопротивление усталостным разрушениям в течение определенного срока, т. е. некоторого числа циклов. Поэтому,, если при расчетах на усталость из всей кривой Велера важно знать фактически лишь одну точку — предел усталости, то при расчете на ограниченную выносливость суш.ественное значение приобретает верхняя часть кривой Велера. Однако характеристики работы детали и ее ресурс, поскольку он задан, исходя из других соображений, фактически определяют уменьшенную базу испытаний на усталость. Тем самым главным становится по возможности наиболее точное воспроизведение в испытаниях истинных условий работы детали и установление статистических характеристик, определяющих вероятность разрушения детали при напряжениях, отличающихся от выявленного таким образом условного предела усталости (предела ограниченной выносливости), и при числах циклов, отличающихся от базы испытаний. Последнее особенно важно в связи с тем, что при напряжениях, заметно превышающих истинный предел усталости и близких к пределу статической прочности, разброс данных усталостных испытаний бывает очень большим. В последние годы статистическим методам обработки данных усталостных испытаний уделяется большое внимание.  [c.306]


Проведенные исследования [26-27, 59-60, 91] показали возможность применения уравнения усталостного разрушения для расчётов поверхно-стно-упрочнённых деталей при условии замены их такими же по форме и размерами и эквивалентными по прочности неупрочнёнными деталями, изготовленных из материалов с другими, более высокими свойствами, к которым применимы уравнения (4.3)-(4.4). Задача в этом случае свелась к отысканию условий перехода от поверхностно-упрочнённой детали к эквивалентной, т.е. к определению характеристик сопротивления усталости материала эквивалентной детали по известным характеристикам исходного материала детали и свойствам упрочнённого поверхностного слоя, определяемых режимами проведения ППД или другими методами упрочнения.  [c.72]

Общая для всего мира тенденция улучшения рабочих параметров ГТД за счет увеличения степеней сжатия как следствие приводит к появлению большого числа коротких лопаток с собственными частотами колебаний даже по первой форме в области высоких звуковых частот циклов. Увеличение частоты / при данном ресурсе эксплуатации Тэ автоматически приводит к росту циклической наработки N. Поскольку ресурс Тэ также имеет тенденцию к росту, увеличивается относительное число усталостных повреждений среди возможных нарушений работоспособности деталей ГТД. Стала актуальной проблема оптимизации технологии коротких лопаток и связанных с ними элементов дисков по характеристикам сопротивления усталости на высоких звуковых частотах и эксплуатационных температурах, которые, как и частота нагружения, становятся все более высокими. Из-за жестких требований к весу деталей и сложности их конструкции в каждой из них имеет место около десятка примерно равноопасных зон, включающих различные по форме поверхности и концентраторы напряжений гладкие участки клиновидной формы, елочные пазы, тонкие скругленные кромки, га.лтели переходные поверхности), ребра охлаждения, малые отверстия, резьба и др. Даже при одинаковых методах изготовления, например при отливке лопаток, поля механических свойств, остаточных напряжений, структуры и других параметров физико-химического состояния поверхностного слоя в них получаются различными. К этому следует добавить, что из-за различий в форме обрабатывать их приходится разными методами. Комплексная оптимизация технологии изготовления таких деталей по характеристикам сопротивления усталости сразу всех равноопасных зон без использования ЭВМ невозможна. Поэтому была разработана система методик, рабочих алгоритмов и программ [1], которые за счет применения ЭВМ позволяют на несколько порядков сократить число технологических испытаний на усталость, необходимых для отыскания области оптимума методов изготовления деталей, а главное строить математические модели зависимости показателей прочности и долговечности типовых опасных зон деталей от обобщенных технологических факторов для определенных классов операций с общим механизмом процессов в поверхностном слое. Накапливая в магнитной памяти ЭВМ эти модели, можно применять их для прогнозирования наивыгоднейших режимов обработки новых деталей, которые в авиадвигателестроении часто меняются без трудоемких испытаний на усталость. Построение  [c.392]


Смотреть страницы где упоминается термин Методы определения характеристик усталостной прочности : [c.50]    [c.155]    [c.36]    [c.3]    [c.303]   
Смотреть главы в:

Методика усталостных испытаний  -> Методы определения характеристик усталостной прочности



ПОИСК



141 —149 — Определение характеристика

Метод характеристик

Определение характеристик прочности

Прочность Определение

Прочность усталостная

Усталостная

Ч асть первая ХАРАКТЕРИСТИКИ УСТАЛОСТНОЙ ПРОЧНОСТИ i И МЕТОДЫ ИХ ОПРЕДЕЛЕНИЯ Общие сведения. Методы оценки поврежденности металла циклической нагрузкой



© 2025 Mash-xxl.info Реклама на сайте