Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основы гидродинамики. Основные уравнения движения жидкости

Глава 2 посвящена исследованию стационарных процессов переноса тепла и движения жидкости в каналах ядерных реакторов. На основе сопряженных уравнений вводится понятие функций ценности источников тепла и движущих сил в потоке теплоносителя. Строится теория возмущений для линейных функционалов температуры и скорости потока. Рассматриваются функции Грина основного и сопряженного уравнений переноса тепла и гидродинамики, поясняющие физический смысл введенных функций ценности.  [c.6]


Приведенная выше система уравнений гидродинамики и энергии смеси является незамкнутой. Для ее замыкания могут быть использованы экспериментальные данные. Но получить такие данные можно на базе имеющихся общих уравнений. Поэтому выведем основные критерии для течения двухфазной жидкости, положив в основу уравнения движения. Выпишем одно из них  [c.67]

Обзор содержания. Классическая механика жидкости является одним из разделов механики сплошных сред и исходит, таким образом, из предположения, что жидкость по своей структуре практически непрерывна и однородна. Основное отличие жидкости от других сплошных сред заключается в том, что в положении равновесия касательные напряжения на границе раздела двух смежных частей жидкости должны равняться нулю. Само по себе это свойство не является достаточным для описания движения жидкости, хотя оно и положено в основу гидростатики и гидродинамики. Для того чтобы характеризовать физическое поведение некоторой жидкости, это свойство должно быть обобщено, представлено в надлежащей аналитической форме и учтено в уравнениях движения произвольной сплошной среды. При этом неизбежно получается система дифференциальных уравнений, которым должны удовлетворять скорость, давление, плотность и т. д. при произвольном движении жидкости. В данной статье мы будем рассматривать эти дифференциальные уравнения, их вывод из основных аксиом и различные формы, которые принимают эти уравнения при более или менее ограничительных предположениях, касающихся свойств жидкости или ее движения.  [c.5]

Уравнения (3.28)—это дифференциальные уравнения движения идеальной (невязкой) жидкости. Они устанавливают связь между проекциями объемных, массовых сил и скоростей, давлением и плотностью жидкости и являются основой для изучения многих основных вопросов гидродинамики. Их называют уравнениями Эйлера.  [c.91]

Лекции по механике сплошных сред являются частью готовящегося к изданию курса Механика и могут рассматриваться как самостоятельное учебное пособие по данной теме. Лекции написаны на основе курсов, читаемых авторами на физическом факультете МГУ. Поскольку раздел Механика сплошных сред невозможно изложить без применения соответствующего математического аппарата, то он является одним из самых сложных разделов курса общей физики. Изложение материала построено на индуктивном методе, в рамках которого студенты вначале изучают более простые темы Гидростатика и Аэростатика , а затем изучают динамику движущихся жидкостей и газов. В конце студенты знакомятся с основными уравнениями гидродинамики, получающимися как обобщение частных случаев движения сплошных сред. Это, по нашему мнению, позволит им достаточно легко адаптироваться при изучении механики сплошных сред в курсе теоретической физики.  [c.3]


Данная монография является третьей книгой из задуманного цикла монографий, посвященных изложению фундаментальных вопросов современной теории процессов переноса в тех физикохимических системах, где осуществляются основные процессы химической технологии. В первой из них была рассмотрена теория процессов переноса в системах жидкость—жидкость [1], во второй [2] — теория процессов переноса в системах жидкость— твердое тело. Данная монография посвящена систематическому изложению теоретических вопросов гидродинамики и массообмена в газожидкостных системах. В книге на основе фундаментальных уравнений гидродинамики рассмотрено движение одиночного пузырька газа в жидкости, вопросы взаимодействия движущихся пузырьков (в том числе их коалесценция и дробление), пленочное течение жидкости. Эти результаты использованы при построении моделей течений в газожидкостных систе.мах.  [c.3]

Нам представляется неудачным термин гидравлика переменной массы , широко используемый Г. А. Петровым и некоторыми другими авторами. При установившемся движении масса жидкости в каждом неподвижном отсеке потока (эйлеровы переменные) остается постоянной. Поэтому такого типа течения, на наш взгляд, лучше называть потоками с переменным по пути расходом. Гидравлическая теория таких потоков лшжет быть построена на основе законов механики о движении тела переменной массы. В то же время такая интерпретация явления имеет смысл лишь прк гидравлическом (одномерном) его описании. Попытки отдельных авторов (А. С. Кожевников и др.) строить основные дифференциальные уравнения гидродинамики, базируясь на теореме Мещерского динамики материальной точки переменной массы, строга говоря, лишены основания, так как в гидродинамической постановке учет изменения расхода потока вследствие присоединения или отделения части расхода по длине требует лишь соответствующего назначения граничных условий.  [c.719]

Дальнейшее развитие учения о движении жидкости и обобщение законов гидростатики дали возможность членам Российской академии наук в Санкт-Петербурге Леонарду Эйлеру (1707—1783 гг.) и Даниилу Бернулли (1700—1782 гг.) разработать теоретические основы гидравлики и, таким образом, создать прочную теоретическую базу, позволившую выделить гидравлику в отдельную отрасль науки. Д. Бернулли, работая над проблемами математики и механики, посвятил ряд мемуаров вопросам движения и сопротивления жидкости. В 1738 г. им опубликован капитальный труд по гидродинамике, в предисловии к которому автор указал, что его труд полностью принадлежит России, и прежде всего ее Академии наук. В этой работе Бернулли дал метод изучения движения жидкости, ввел понятие гидродинамика и предложил известную теорему о запасе энергии движущейся частицы жидкости. Эта теорема носит теперь имя Д. Бернулли и лежит в основе ряда разделов гидравлики. Л. Эйлер первый дал ясное определение понятия давления жидкости и, пользуясь им, в 1755 г. вывел основные дифференциальные уравнения движения некоторой воображаемой жидкости, лишенной трения, так называемой идеальной жидкости. Эти уравнения впоследствии были названы его именем. На основе учения Л. Эйлера возникла родственная гидравлике наука — гидромеханика, также рассматривающая законы движения жидкостей, но на основе только математического анализа, тогда как гидравлика для изучения отдельных вопросов широко использует и экспериментальный метод.  [c.7]


Смотреть страницы где упоминается термин Основы гидродинамики. Основные уравнения движения жидкости : [c.3]    [c.6]    [c.5]    [c.143]   
Смотреть главы в:

Гидравлика, основы сельскохозяйственного водоснабжения и канализации  -> Основы гидродинамики. Основные уравнения движения жидкости



ПОИСК



283 — Уравнения жидкости

Гидродинамика

Основа жидкостей

Основное уравнение движения

Основные уравнения гидродинамики

Основные уравнения движения

Основные уравнения движения жидкости

Основы гидродинамики

Уравнение основное

Уравнения гидродинамики

Уравнения движения жидкости

Уравнения движения основные в гидродинамике

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте