Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические свойства аморфных металлов и сплавов

МЕХАНИЧЕСКИЕ СВОЙСТВА АМОРФНЫХ МЕТАЛЛОВ И СПЛАВОВ  [c.83]

Влияние очень малого содержания примесей обусловлено значительной локальной концентрацией по границам зерен, двойников, блоков. При отсутствии границ зерен или измельчении зерна механические свойства металлов существенно лучше это используют на практике (монокристаллы, аморфные сплавы).  [c.16]

Аморфное состояние металлов метастабильно. При нагреве, когда подвижность атомов возрастает, протекает процесс кристаллизации, что постепенно приводит металл (сплав) через ряд мета-стабильных в стабильное кристаллическое состояние. Механические, магнитные, электрические и другие структурно-чувствительные свойства аморфных сплавов значительно отличаются от свойств кристаллических сплавов. Характерной особенностью аморфных сплавов являются высокий предел упругости и предел текучести при почти полном отсутствии деформационного упрочнения.  [c.372]


В таблице 7-4 дается сравнение характеристик сверхпроводимости и механических свойств сверхпроводников из аморфных сплавов на основе переходных металлов и сплавов со смешанной аморфно-кристаллической структурой. Приведены также данные  [c.222]

В учебном пособии рассмотрены основы материаловедения, включающие в себя взаимосвязь состава, Строения и механических, электрических, магнитных свойств материалов. Описаны технологии получения и обработки монокристаллов, поликристаллических слитков, аморфных структур, нанокристаллических материалов и композитов, упрочнение металлов и сплавов дисперсными модифицирующими добавками термическая обработка, высокоэнергетические технологии обработки деталей. Показано использование материалов в технике в зависимости от их химического состава, структуры и свойств. Дано описание свойств конструкционных и инструментальных сталей, сплавов алюминия, меди, магнитных, проводниковых, диэлектрических, полупроводниковых и других материалов.  [c.4]

Механические свойства аморфных металлов обладают повышенной стойкостью по отношению к нейтронному облучению. Приведены также отдельные данные по ускоряющему влиянию электронного облучения на кристаллизацию. Следует отметить, что в общем случае облучение электронами высокой энергии может влиять как на скорость образования зародышей при кристаллизации, так и на их рост. В случае широко известного сплава FeMNi oPuBe облучение электронами не оказывает заметного влияния на кинетику кристаллизации, которая, очевидно, лимитируется диффузней по границам раздела, но приводит к увеличению скорости зарождения, которая в свою очередь определяется объемной диффузией.  [c.20]

При облучении электронами или нейтронами в кристаллических металлах и сплавах в больших количествах образуются вакансии и поры, что приводит к снижению их пластичности. В этой связи понятна важность изучения влияния облучения на механические свойства аморфных металлов. Обратимся к табл. 8.3 [29]. В ней приведены значения некоторых механических свойств аморфного сплава PdsoSiao ДО и после облучения нейтронами (доза облучения составляла 5-10 нейтронов на 1 см ). Напряжение разрушения и предельное удлинение, в отличие от кристаллических металлов, почти не изменяются при облучении. Однако модуль Юнга после облучения уменьшается на 10%, что вызывает увеличение упругой деформации. Это же является причиной так называемого разупрочнения . В работе [30], по- таблица 8.3. Влияние облучеян свяш,енной изучению влияния облучения нейтронами на структуру аморфных сплавов, указывается, что при облучении, предположительно, происходит увеличение свободного объема и нарушение ближнего порядка. Однако в целом можно считать, что аморфные металлы по сравнению с кристаллическими Обладают превосходной стойкостью по отношению к нейтронному облучению.  [c.241]


Характерной особенностью кристаллов вообще и металлов в частности является анизотропия (векториальность) свойств. Анизотропией назьшается зависимость физических, химических и. механических свойств от направления осей монокристалла и приложения силы. Кристалл-тело анизотропное в отличие от изотропных аморфных тел (стекло, пласт.массы, резина и др.), свойства которых не зависят от направления действия силы. Причиной анизотропии является неодинаковая плотность атомов в различных направлениях. Так как металлы и сплавы на их основе являются поликристаллитами, то состоят из большого числа беспорядочно ориентированных анизотропных кристаллов. В большинстве реальных случаев кристаллы по отношению друг к другу ориентированы различно, поэтому во всех направлениях свойства металлов более или менее одинаковы, т.е. поликристаллическое тело является изотропным.  [c.23]

В первой части гл. 8 последовательно описаны закономерности упругих и Прочностных. свойств, а также процессы деформации и разрушения. Подчеркнута такая характерная черта аморфных сплавов, как высокая вязкость разрушения в сочетании с высокой прочностью. Рассмотрена также зависимость механических свойств от температуры и скорости. деформирования. В аморфных сплавах ниже некоторой температуры Гр пластическая деформация протекает крайне неоднородно — она сосредоточена в полосах деформации, которые на стадии разрушения служат источником трещин. Выше Тр пластическая деформация становится однородной. На первом температурном участке прочность сравнительно слабо зависит от скорости деформирования, на втором эта зависимость выражена ярко. Темп уменьшения прочности с повышением температуры резко возрастает при Т>Тр, а разрушение при этом происходит после образования шейкн. Кривые ползучести аморфных сплавов имеют вид, идентичный кривым ползучести кристаллических металлов, но природа их специфического вида совершенно разная, поскольку дислокационный механизм развития ползучести для аморфных сплавов не приемлем. В стности, процесс установившейся ползучести в аморфных металлах связан с механизмом вязкого течения и осуществляется путем диффузии.  [c.20]

В заключение описания вопросов, изложенных в гл. 9, отметим следующее. Во-первых, как и в случае обсуждения механических свойств, авторы не уделили должного внимания влиянию структурной релаксации на коррозионную стойкость аморфных сплавов. А это влияние достаточно велико (см. например, [43] ). Во-вторых, развиваемая авторами концепция высокой коррозионной стойкости аморфных сплавов не является общепризнанной. В частности, в СССР рядом авторов в развитие идей акад. Я- М. Колотыркниа отстаивается точка зрения, что. высокая коррозионная стойкость аморфных сплавов может быть обусловлена образованием на поверхности металла кластеров с сильно выраженными направленными связями [11, с. 43—45]. Высокая химическая стойкость и особенности электронной структуры этих кластеров обеспечивают сравнительно легкую пассивацию и соответственно высокую коррозионную стойкость аморфных сплавов. Кластерная концепция позволяет понять значение углерода, в формировании коррозионных свойств аморфных сплавов и большую разницу в коррозионной стойкости сплавов Fe —Сг — Р и Fe — Сг — Р — С [474 (в предлагаемой книге углероду в этом плане отводится неоправданно скромная роль). Интересно отметить, что по данным работы [463 в сплаве системы Fe — Ni — Сг — Р — В при фиксированных потенциалах пассивной области в растворе Na l на поверхности образуется пассивирующая пленка толщиной менее моноатомного слоя.  [c.21]

Химические свойства. Возможность использования в различных отраслях техники аморфных сплавов определяется еще и тем, что, помимо особых магнитных свойств, аморфные сплавы обладают уникальным комплексом химических и механических свойств. Высокие коррозионные свойства аморфных сплавов сделали их перспективными для использования в технике в качестве коррозионно-стойких материалов. Среди аморфных сплавов на основе железа наивысшую стойкость в агрессивных кислых средах имеют сплавы с определенным сочетанием металлов и неметаллов (высокое содержание хрома и фосфора). Однако высоким сопротивлением коррозии обладают только стабильные аморфные сплавы. Наглядным примером являются аморфные быстрозакаленные сплавы железо—металлоид, не содержащие других металлических элементов, кроме железа. В силу химической неустойчивости аморфного состояния они обладают низкой коррозионной стойкостью. Однако при введении хрома (вместо части железа) резко возрастает химическая стабильность аморфного состояния и, как следствие, растет коррозионная стойкость. Отметим, что в первом случае сопротивление коррозии аморфного сплава железо—металлоид ниже, чем у чистого кристаллического железа, а во втором оно превосходит коррозионную стойкость нержавеющих сталей и высокосодержащих никелевых сталей [427].  [c.303]


Рассмотрены основные положения теории коррозии и пассивности металлов и сплавов. Описан механизм наиболее опасного вида коррозии — локальной, а также коррозии при одновременном воздействии механических напряжений. Показано влияние условий эксплуатации на коррозионное поведение конструкционных сплавов. Изложены принципы создания металлических сплавов повышенной стойкости. Описаны свойства важнейших конструкционных коррозионностойких сплавов. Указаны способы повышения коррозионной стойкости сплавов специального назначения поверхностным легированием, созданием металлокерами ческих композиционных материалов, получением сплавов в аморфном состоянии.  [c.2]


Смотреть страницы где упоминается термин Механические свойства аморфных металлов и сплавов : [c.235]    [c.12]    [c.82]   
Смотреть главы в:

Физические величины. Справочник  -> Механические свойства аморфных металлов и сплавов



ПОИСК



189 —Механические свойства сплавов Д-16 и Д-20 — Механические свойства

Аморфное юло

Аморфные металлы

Аморфные сплавы механические

Металлов Свойства

Металлы Механические свойства

Металлы и сплавы Металлы

Механические свойства металлов и сплавов

Свойства металлов сплавов

Сплав аморфные

Сплавы Механически:: свойства

Сплавы Механические свойства

Сплавы металлов



© 2025 Mash-xxl.info Реклама на сайте