Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение волокнистых композитов раздела

Механизмы, определяющие вязкость разрушения волокнистых композитов, можно изучать на идеализированных композитных системах это позволяет оценить роль поверхности раздела. Рассмотрим сначала, какой вклад вносят волокно и матрица по отдельности затем обсудим, как влияет в этом отношении поверхность раздела.  [c.279]

Как прочность и тип связи на фанице раздела влияют на характер разрушения волокнистого композита  [c.182]

Рассмотрим подробнее феноменологическую сторону вопроса разрушения поверхности при трении. Поверхностный слой при сухом трении находится в сложно-напряженном состоянии сжатия со сдвигом. В работе [12] приводятся данные, полученные на основе изучения береговой линии частиц износа, которые показывают, что сила трения может инициировать в поверхностном слое как трещины нормального отрыва, так и трещины сдвига. Береговая линия каждой частицы образуется в результате объединения различных видов трещин. Можно предположить, что АЭ сигналы, соответствующие этим двум видам трещин, должны различаться. Это предположение основывается на результатах исследования разрушения волокнистых композитов. При этом было показано, что разрушение волокон при приложении осевой нагрузки к ним сопровождается относительно короткими сигналами АЭ, а разрушение же элементов композита, обусловленное сдвиговыми процессами (разрушение межфазовых границ раздела, вытягивание волокон из матрицы), сопровождается длинными сигналами АЭ. В нашем случае в качестве критерия относительной длины сигнала можно взять отношение двух измеряемых параметров АЭ сигнала - числа осцилляций 8 в сигнале к его максимальной амплитуде А в мВ на выходе канала усиления. Можно сделать еще одно предположение, которое заключается в том, что в первую очередь в поверхностном  [c.69]


Тем не менее, исследования поперечного нагружения волокнистых композитов явно свидетельствуют о том, что в таких условиях прочность связи на поверхности раздела должна в большей степени определять прочность композита, чем в условиях осевого нагружения. То, что в некоторых композитах А1 — В и Ti — В слой интерметаллида на поверхности раздела е влияет на прочность, возможно, объясняется разрушением композита вследствие рас-щ,епления волокон. Такое расщепление практически сводит на нет роль поверхности раздела при поперечном нагружении, так как волокна не могут нести поперечной нагрузки, даже если поверхность раздела и передает ее.  [c.60]

Свойства волокнистых композитов при нагружении сжатием обнаруживают значительные отклонения от правила смеси [48, 66] так, у композита алюминий—нержавеющая сталь непосредственно после изготовления предел упругости выще в 2 раза, а предел микротекучести — в 5—8 раз (в зависимости от объемной доли упрочнителя). Диаграммы деформации композита алюминий—нержавеющая сталь при сжатии для различных значений объемной доли упрочнителя приведены на рис. 16. Показано, что разрушение происходит в фазе , т. е. путем сдвига (выгибанием), и. не связано с отслаиванием (отрывом) проволоки по поверхности раздела. В соответствии с этими данными был пред-  [c.247]

Экспериментальные результаты, представленные в этом разделе, демонстрируют чрезвычайную сложность проблемы удара применительно к волокнистым композитам. Дополнительно к большому числу параметров, необходимых для характеристики статической прочности композитов, поведение при ударе усложняется дополнительными факторами, такими, как скорость удара, форма и размер пули, распространение волны, внутренние повреждения и методика эксперимента. Обзор представленных здесь экспериментальных результатов, каждый из которых имеет дело с небольшой частью проблемы, демонстрирует необходимость ее основательного анализа. Плохое сопротивление удару волокнистых композитов является, по-видимому, наиболее серьезным недостатком их механического поведения, но сейчас можно очень мало сказать об его улучшении. Необходимо сделать попытку построить модель разрушения (или модели) в условиях удара, а не собирать еще экспериментальные данные, которые едва][ли смогут послужить руководством для инженера.  [c.330]

Алюминий 6061, армированный волокнами бора, является в настоящее время наиболее усовершенствованным волокнистым композитом с металлической матрицей. На рис. 1, а приведены кривые напряжение — число циклов до разрушения (S — N) для характерных современных композитов, а микроструктуры их поверхностей раздела изображены соответственно на рис. 1, б для волокон без покрытия и на рис. 1, в для волокон с покрытием Si ).  [c.398]


Армирование металлов прочными жесткими волокнами может значительно поднять предел усталости. При этом не только увеличивается несущая способность композита, но и усталостные трещины могут задерживаться, тормозиться и отклоняться волокнами. Усталостные процессы в металлах, армированных волокнами, можно охарактеризовать следующим образом в процессе одноосного циклического нагружения композиты имеют тенденцию к циклической устойчивости, к отсутствию значительного упрочнения или разупрочнения. Как и в металлах, усталостные трещины зарождаются на свободных поверхностях, но могут также возникать и внутри композита около оборванных волокон или у их концов. Поверхности раздела волокон и матрицы могут задерживать или тормозить усталостные трещины или же менять направление их роста таким образом, что распространение становится относительно безопасным. Поскольку мест для возможного зарождения трещин много и поверхности раздела способны изменять направление роста трещин, отличительной чертой поверхностей усталостного разрушения в волокнистых композитах в случае высокой усталостной прочности является их крайне неровный характер.  [c.437]

Развитие усталостного разрушения волокнистых композиционных материалов существенно зависит от объемных долей армирующих волокон. При малых долях волокон разрушение на микроструктурном уровне начинается с возникновения усталостных трещин в матрице, и далее развитие процесса разрушения зависит от того, насколько эффективно волокна и границы раздела между компонентами способствуют торможению, отклонению и задержке микротрещин [105]. В этих случаях усталостное разрушение развивается одинаково и в композитах с хрупкими волокнами (алюминий-бор), и в композитах с пластичными волокнами (алюминий-сталь).  [c.28]

Глава открывается кратким обсуждением наиболее распространенных методов определения вязкости разрушения композитных материалов. Затем рассмотрено разрушение композитных материалов, упрочненных волокнами и частицами, а также слоистых композитов, причем особое внимание уделено волокнистым системам направленной кристаллизации. Наряду с экспериментальными данными для каждого класса материалов представлена сводка соответствующих теоретических результатов. В конце главы приводится обзор данных по разрушению композитов и обсуждается влияние поверхности раздела.  [c.267]

Разработан ряд прямых методов измерения характеристик напряженного состояния на поверхности раздела и адгезионной прочности. Поляризационно-оптический метод волокнистых включений наиболее надежен при определении локальной концентрации напряжений. Испытания методом выдергивания волокон из матрицы пригодны для измерения средней прочности адгезионного соединения, а методы оценки энергии разрушения — для определения начала расслоения у концов волокна. Прочность адгезионной связи можно установить по результатам испытаний композитов на сдвиг и поперечное растяжение. Динамический модуль упругости и (или) логарифмический декремент затухания колебаний применяются для определения нарушения адгезионного соединения. Динамические методы испытаний и методы короткой балки при испытаниях на сдвиг обычно пригодны для контроля качественной оценки прочности адгезионного соединения и определения влияния на нее окружающей среды.  [c.83]

В волокнистых металлических композитах, за исключением композитов с направленной эвтектикой, волокно и матрица, как правило, не находятся в состоянии химического равновесия. Из всех факторов, воздействующих на усталостную прочность композита, вероятно, самым малопонятным является влияние прочности и микроструктуры на границе раздела волокна и матрицы. Увеличение прочности происходит в результате того, что посредством касательных напряжений усилия передаются через границу раздела волокна и матрицы, и высокомодульные волокна несут большую часть приложенных параллельно им нагрузок. Поверхности раздела играют и другую важную роль в сопротивлении разрушению, контролируя вид распространения трещин они могут отклонять распространяющиеся трещины и задерживать рост трещин.  [c.396]


Для большинства жестких наполнителей в тех случаях, к /дз поверхность раздела прочна, вязкость разрушения уменьшается с ростом их объемной доли увеличение объемной доли напглнителя сопровождается усилением стеснения и пластического течения матрицы. В широко исследованной системе кобальт — карбид вольфрама стеснение матрицы при 80 об.% упрочнителя достаточно велико, чтобы не происходило ее заметного пластического течения поэтому разрушение происходит почти исключительно путем связывания трещиной в матрице смежных разрушенных карбидных частиц. В этой ситуации прочность при разрушении существенно зависит от тех же статистических функций, которые описывают разрушение волокнистых композитов если довольно много частиц разрушено, то несущая способность остальных частиц оказывается недостаточной и композит будет разрушаться. При меньшей объемной доле упрочнителя более значительную роль играют характеристики матрицы [48].  [c.303]

Потенциальные возможности волокнистого композита в наибольшей степени проявляются при его нагружении в направлении волокон. В этом случае очень важен механизм передачи нагрузки от волокон к матрице и обратно. Существуют четыре возможных вида разрушения (1) разрыв волокна, (2) сдвиговое разрушение на границе раздела, (3) разрыв по границе раздела от растяжения и (4) разрыв матрицы. Полный микромеханиче-ский анализ напряжений должен предсказывать вид разрушения в данном композите и определять оптимальные свойства компонентов композита.  [c.517]

Высказывалось предположение, что возможны случаи, когда предпочтительна слабая поверхность раздела. Согласно Куку и Гордону [12], поле напряжений у вершины развивающейся трещины включает не только главные напряжения, стремящиеся раскрыть трещину в направлении ее распространения, но и напряжения, стремящиеся раскрыть ее в перпендикулярном направлении. Значит, эти дополнительные напряжения могут раскрывать плоскости с ослабленной связью, пересекаемые магистральной трещиной. Эм бери и др. [17] применили эти представления к случаю разрушения слоистых композитов. Они показали, что в пакете стальных листов распространение трещины задерживается процессом расслаивания это приводило к важному результату — снижению температуры перехода от вязкого разрушения к хрупкому более чем на 100 К. Эти исследования были продолжены Олмондом и др. [2], которые получили ряд новых данных об указанном типе структур, тормозящих распространение трещины. По очевидным соображениям аналогичный подход применим и к волокнистым композитам этот вопрос рассмотрен в гл. 7 в связи с проблемой разрушения. Значительные объемы композита, расположенные по обе стороны от магистральной трещины, могут быть охвачены одновременным действием различных механизмов разрушения, а в таких случаях, как показали Эдсит и Витцелл [1] на примере композитов алюминий — бор, вязкость разрушения композита может превосходить вязкость разрушения металлической матрицы.  [c.25]

Число статей на эту тему (для однонаправленных волокнистых композитов) довольно невелико. Часть из них посвящена только экспериментальным наблюдениям, т. е. выясняется, зависит ли прочность от скорости или нет. Другие пытаются объяснить механизм разрушения при низкой и высокой скоростях деформации. Большинство работ выполнено в такой области скоростей деформаций, которая обычно свойственна стандартным испытательным машинам и обычно перекрывает четыре порядка скоростей (например, от 2-10" до 2 мин" ). Следующая область скоростей, которая до некоторой степени была исследована,— это уже область удара (представлена в следующем разделе), соответствующая скоростям деформации от 10 до 10 мин . Таким образом, остается пробел в описании механического поведения композиционных материалов.  [c.316]

Моделирование на ЭВМ кинетики развития усталостных треаи(ин в слоистых и волокнистых композитах. Выше уже отмечалась роль границ раздела в повышении трещиностойкости композитов (см. рис. 8). Заметим, что границы раздела компонентов в ряде случаев представляют собой самостоятельный объект исследования и их роль в развитии усталостного разрушения трудно переоценить. Одна из особенностей границ раздела это неравномерность прочности соединения компонентов, которая является результатом как неравномерности контакта, так и неравномерности физико-химического взаимодействия волокон и матрицы, отмечаемой, например, при диффузионной сварке или при прокатке [2,208].  [c.234]

Разрушение однонаправленных волокнистых, слоистых и слоисто-волокнистых композитов по плоскости раздела слоев наиболее близко по характеру к видам разрушения, которые рассматриваются в механике разрушения. Направление развития трещины в этом случае задано расположением слоев. Поэтому для оценки трещиностойкости композитов при межслойном разрушении часто применяют те же методы испытаний и обработки результатов, что и для обычных конструкционных материалов. Отличие состоит лишь в том, что в расчетах учитывают анизотропию композитов как макроскопически однородных материалов [24].  [c.178]

Сопоставление результатов испытаний волокнистых и слоистых композитов показывает, что существенное повышение усталостной прочности происходит не только за счет наличия жестких волокон, но и за счет торможения трещин границами компонентов [2, 105]. При высоких объемных долях волокон развитие разрушения на микроструктурном уровне сопровождается разрушением. отдельных волокон, которое может быть как усталостным, т.е. в результате накопления локальных субмикроповреждений, так и статическим, вызванным локальными перегрузками в результате перераспределения напряжений в композите. В этих случаях развитие процесса разрушения еще более чувствительно к состоянию границ раздела волокон и матрицы например, при наличии пор на границах разрушение отдельных волокон может не приводить к окончательному разрушению материала, в то же время при наличии прочной связи разрушение отдельных волокон приводит к развитию макроразрушения композита.  [c.28]



Смотреть страницы где упоминается термин Разрушение волокнистых композитов раздела : [c.231]   
Поверхности раздела в металлических композитах Том 1 (1978) -- [ c.303 ]



ПОИСК



Волокнистость

Волокнистые композиты

Композит

Разрушение волокнистых композитов

Разрушение волокнистых композитов поверхности раздела

Разрушение композитов



© 2025 Mash-xxl.info Реклама на сайте