Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Заделка конца балки

Случай заделки конца балки  [c.239]

При расчете балок различают три основных вида опор (три вида закрепления концов балок) шарнирно подвижная опора шарнирно неподвижная опора жесткая заделка конца балки.  [c.186]

При определении опорных реакций заделка конца балки даёт три неизвестные величины.  [c.54]

При жесткой заделке концов балки прогиб существенно снижается  [c.258]

Пример 4.12. Балка равнобокого уголкового профиля (рис. 165), защемленная одним концом, находится под действием сил собственного веса. Требуется определить наибольшее напряжение в заделке. Длина балки / = 3 м, профиль № 10, толщина стенок профиля 8=10 мм.  [c.154]


Теперь рассмотрим равновесие балки АВ. На нее действует сила Р. Связями являются шарнир В, передающий действие балки ВС, и заделка конца А. Реакцию шарнира В на балку АВ представим в виде двух составляющих Х в и Y b, которые согласно третьему закону Ньютона равны по величине и противоположны по направлениям соответственно силам Хд, Уд, т. е.  [c.58]

Пусть имеем тело, например балку А В, один конец которой А А заделан в стену (рис 50, я). Такое крепление конца балки АА называют заделкой в т о ч к е Л. Пусть на балку действует плоская система сил F , Р,,). Определим силы, которые надо приложить  [c.57]

Жесткая заделка (рис. 288, в) не допускает никаких перемещений защемленного конца балки — накладывает на балку три связи. В заделке возникает реактивный момент и реактивная еила, которую обычно представляют в виде двух ее составляющих.  [c.275]

В дополнение к описанным в 1.4 рассмотрим еще один вид связи, называемый жестким защемлением или жесткой заделкой конца стержня или балки (рис. 1.53). При таком закреплении исключены какие бы то ни было перемещения балки. Можно считать, что часть балки вклеена в отверстие, сделанное в стене.  [c.58]

Пример 23.7. Консольная балка, жестко защемленная одним концом в заделке, состоит из двух деревянных брусьев квадратного сечения, соединенных на другом конце болтом (рис. 23.22). К свободному концу балки приложена сила Л = 15 кН. Длина балки / = 2 м. Определить диаметр стержня болта, если допускаемое напряжение среза [т ,] = 80 МПа. Размер сечения брусьев а = 20 см.  [c.256]

Как и в предыдущей задаче, реакции в заделке можно ве определять, если идти от свободного конца балки.  [c.28]

Используем краевые условия. При 2=0, т. е. на левом конце балки, в заделке 1) у = 0 2) =0=0.  [c.238]

Подробного выполнения выкладок ввиду их элементарности и очевидности не приводим. Эпюры на рис. 12.53 относятся к сечению заделки консольной балки длиною /, загруженной силой Я на конце, при условии //а = 50.  [c.183]

Выведем в виде графиков зависимости от времени перемещение по оси Y свободного конца балки и максимальное напряжение в элементе около заделки (рис. 12.6).  [c.445]

Жесткая заделка (рис. 7.8) не допускает поворота и поступательного перемещения заделанного конца балки. В ней возникают три опорные реакции вертикальная R, горизонтальная Н и реактивный момент М (рис. 7.8, а).  [c.118]

Используем граничные условия. При х = О, т.е. на левом конце балки, в заделке угол поворота и прогиб равны нулю.  [c.132]

Теория упругой заделки. При закреплении конца одномерной балки в каком-либо двумерном или трехмерном теле все исследователи, начиная с Бернулли, Эйлера, Лагранжа и др., принимали в рассматриваемом конце балки условия жесткой заделки. Согласно этому условию положение и направление упругой линии балки в этой точке было фиксированным и заданным. На самом деле, в заделке имеется смещение и поворот, определяемые упругими свойствами, нагрузками и формой всего тела в целом.  [c.170]


Чтобы перейти к формуле для прогиба балки с заделанными концами, он рассматривает бесконечно длинный брус, загруженный, как показано на рис. 50, а. Выделив участок получающейся при этом волнообразной изогнутой оси (рис. 50,6) длиной I, он заключает, что заделка концов уменьшает прогиб в середине пролета до /4 той величины, которая получается в свободно опертой балке того же пролета.  [c.102]

Помимо шарнирных опор, подвижных и неподвижных, о которых говорилось ранее ( 7), в практике встречается еще и опора, осуществляемая жесткой заделкой (неподвижным защемлением) конца балки (рис. 68, а). Такая опора не допускает не только линейных перемещений балки (как и шарнирно-неподвижная опора), но и ее поворота.  [c.92]

Для заделанных по обоим концам балок, а также для неразрезных балок пластический анализ можно провести аналогично тому, как это было описано в предыдущих примерах. Заделанная по обоим концам балка превращается в механизм, когда образуются три пластических шарнира обычно возникает по шарниру в каждой заделке и еще один шарнир в каком-то промежуточном сечении. Неразрезные балки разрушаются, когда в одном из пролетов образуется механизм. Если этот пролет является внутренним, то необходимо появление трех шарниров — по одному на каждый конец пролета и один в промежуточном сечении. Пролету, расположенному на краю свободно опертой балки, для образования механизма необходимы только два шарнира один из них располагается в первой внутренней опоре, а второй — внутри самого краевого пролета.  [c.365]

Жесткая заделка (защемление) не допускает ни линейных перемещений, ни поворотов защемленного конца балки. Жесткую заделку заменяют реактивной силой, которая может быть неизвестна по модулю и направлению, и реактивным моментом (три неизвестных). Когда реактивная сила заранее неизвестна по направлению, ее разлагают на две взаимно перпендикулярные составляющие.  [c.43]

Решение. Возьмем начало координат в точке А на свободном конце балки и направим ось координат, как показано на рис. 23.11 При таком выборе системы координат построение эпюр Q и может быть проведено без предварительного определения реакций заделки.  [c.263]

Пример 6. Определить опорные реак- ции жесткой заделки (защемления) кон- сольной балки (рис. 37). На конце балки подвешен груз Р = 1 кН, длина балки I =  [c.37]

Пример 14. Определить реакции опор А я В заделанной в степу балки длиной Ь=1,5 м. На свободном конце балки приложен груз Р = 3 кН, ширина заделки балки / = 0,5 м (рис. 51).  [c.49]

Такова, например, жесткая заделка левого конца балки на рис. 5.13, а этот конец оказывается полностью закрепленным — невозможны его вертикальное и горизонтальное перемещения, а также и поворот. Такая связь создает систему реакций, состоящую (рис. 5.13, б) из двух составляющих Хд и Уд и пары, момент которой обозначен через М. Это следует из того, что  [c.77]

Здесь первые два условия выражают условия жесткой заделки элементов, а два последних — условия отсутствия изгибающих моментов и перерезающих сил на свободном конце балки. Критерием оптимальности служит квадратичный функционал.  [c.12]

Если для заданных значений параметров Сд р, /гр р, Сщр и hinp, характеризующих нелинейные упругие заделки концов балки, найти собственные значения а из общего уравнения (I. 13), то, очевидно, частота свободных колебаний определится из соотношения  [c.10]

Рассмотрим теперь случай, когда концы перекрестной балки не могут свободно поворачиваться. При этом условии на перекрестнзпю балку кроме нагрузки, представленной на рис. 9, будут действовать по концам моменты М ж М . Величины этих моментов, в случае упругой заделки концов балки, легко находятся при помощи формул (16) и (19). Если перекрестная балка неразрезная, то опорные моменты находятся путем решения уравнений (22). Во всяком случае моменты М ш М" легко определить, пользуясь табл. 1. В дальнейшем нам понадобится полусумма этих моментов, и мы для сокращения записи введем обозначение  [c.201]

Двутавровая балка № 20 передает на кирпичную стену давление Р=2 Т (рис. 154). Определить глубину х заделки конца балки в стену, если допускаемое давление на кладку [ст] = 8 кПсм .  [c.77]

Заделка конца балки 54 Заклёпки 235 Закон взаимности касательных напряжений 22 Закопушка 629 Залегание горных пород621 Зарубин П. А. 571 Засорённость газообразного топлива 701 Затухание колебаний 183 Зацепление червячное 283  [c.789]


Опоры балок могут быть трех видов. Их условные изображения приведены на рис. 11.2. Жесткая заделка, (рис. 11.2, а) препятствует перемещениям по осям координат и повороту за.целанного конца балки. Жесткая заделка передает на балку сопротивление этим перемещениям в виде сил реакций и момента М. Шарнирно-неподвижная опора  [c.134]

Пусть имеем тело, например балку АВ, один конец которой АА заделан в стену (рис. 56, а). Такое крепление конца балки А А называют заделкой в точке А. Пусть на балку действует плоская система  [c.56]

Решение. Эпюри начинаем строить со свободного конца балки. Это ноз водит не определять реакцию и реактивный момент в заделке.  [c.260]

Из рассмотрения устройства опорных закреплений балки следует, что в заделке появятся вертикальная реакция А и реактивный момент Ма, а на правом конце балки — только вертикальная реакция В. Для опреде-"ления трех неизвестных реакций статика дает только два уравнения. Следовательно, данная балка является статически неопределимой и имеет одну лишнюю неизвестную. За лишнюю неизвестную можно взять любую из трех опорных реавдий. Примем в качестве лишней неизвестной реакцию опоры В. В этом случае следует считать, что заданная балка получилась из статически определимой консольной балки АВ, которой потом добавили опору в точке В. Эту статически определимую балку, полуцающуюся из статически неопределимой при удалении добавочного ( лишнего ) опорного закрепления, называют основной системой.  [c.280]

Решение системы (L 111) можно вести непосреДствейно илй по методу Хевисайда [11 ]. Напишем эти решения для двух наиболее часто встречаюш,ихся случаев заделки балки. Будем считать, что на левом конце балка или шарнирно оперта или заш,емлена, а правый конец имеет нелинейную упругую опору того или другого вида. Напишем решения, удовлетворяюш,ие лишь граничным условиям на левом конце балки. Видно, что они будут содержать четыре произвольных постоянных, которые в дальнейшем будем определять, учитывая нелинейные граничные условия правого конца балки (снова делаем предположение, что и при нелинейных условиях следует поступать как в случае однородных граничных условий). Если левая опора балки является шарнирной, то граничные условия будут  [c.48]

Пример 8.14. Для консольной балки, данной на рис. 8.59, запиптем универсальное уравнение упругой линии и найдем прогиб конца балки и угол поворота ее среднего сечения. В заделке  [c.226]

Модель неразрезной балки и рамы получается путем соединения электрических моделей стержней. Например, при жесткой заделке конца накоротко замыкаются соответствующие зажимы электрической цепи и при шарнирном опирании конца — зажимы остаются разомкнутыми. При наличии в стержневой системе замкнутых контуров трехполюсники заменяются соотвествующими четырехполюсниками, симметричными относительно продольной оси.  [c.265]


Смотреть страницы где упоминается термин Заделка конца балки : [c.153]    [c.429]    [c.340]    [c.267]    [c.191]    [c.113]    [c.437]    [c.106]    [c.208]    [c.485]    [c.173]   
Технический справочник железнодорожника Том 2 (1951) -- [ c.54 ]



ПОИСК



Заделка

Концы



© 2025 Mash-xxl.info Реклама на сайте