Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волокно, влияние на усталостное разрушение

Дж. Гордон и Дж. Кук изучали влияние прочности связи волокна с матрицей на характер распространения трещин в композиционном материале. Они показали, что впереди острия трещины наряду с растягивающими напряжениями (Ог) действуют поперечные напряжения (а ). При определенном соотношении между ними под действием напряжения возможно расслоение или разрушение границы волокна с матрицей. Трещина в этом случае распространяется не через волокно, а отводится в направлении, перпендикулярном оси волокна (рис. 10.7). Таким образом, рост трещины тормозится в главном направлении и одна большая трещина, способная разрушить материал, в композиции преобразуется во множество мелких ответвленных трещин. Структурные особенности композиционных материалов и связанный с этим прерывистый характер распространения трещины определяют их существенное отличие в характере усталостного разрушения от наблюдаемого в металлах и сплавах. В композиционных материалах критическая длинна де-  [c.262]


Известно очень мало данных о влиянии химической и физической структуры полимеров на их выносливость. Влияние некоторых структурных факторов на механические потери полимеров рассмотрены в гл. 4. Однако практически не установлено никакой связи между химической и молекулярной структурой полимеров и условиями образования и прорастания трещин. Связь между образованием трещин и наличием неоднородностей структуры и дефектов коротко рассмотрена в гл. 5. Обычно факторы, повышающие прочность полимеров, обусловливают также возрастание выносливости. Так, при увеличении молекулярной массы полимеров их выносливость возрастает до определенного предела [47, 48]. Выносливость повышается также при уменьшении вероятности образования микротрещин, например при ориентации в направлении, параллельном прикладываемому напряжению [49]. Ориентация заметно влияет на выносливость деталей из полипропилена, получаемых литьем под давлением и подвергаемых при эксплуатации многократному изгибу. Поскольку выносливость в решающей степени определяется прорастанием трещин, надрезы и царапины на образцах могут вызвать резкое уменьшение выносливости, особенно в материалах, чувствительных к надрезам. В полимерных волокнах и вулканизованных каучуках усталостное разрушение сопровождается разрывом полимерных цепей и образованием свободных радикалов.  [c.206]

Волокно, влияние на усталостное разрушение 955  [c.1643]

В волокнистых металлических композитах, за исключением композитов с направленной эвтектикой, волокно и матрица, как правило, не находятся в состоянии химического равновесия. Из всех факторов, воздействующих на усталостную прочность композита, вероятно, самым малопонятным является влияние прочности и микроструктуры на границе раздела волокна и матрицы. Увеличение прочности происходит в результате того, что посредством касательных напряжений усилия передаются через границу раздела волокна и матрицы, и высокомодульные волокна несут большую часть приложенных параллельно им нагрузок. Поверхности раздела играют и другую важную роль в сопротивлении разрушению, контролируя вид распространения трещин они могут отклонять распространяющиеся трещины и задерживать рост трещин.  [c.396]

Виды роста усталостных трещин, наблюдавшиеся в металлах, армированных волокнами, соответствуют прогнозам, сделанным на основе рассмотрения упругого поля напряжений у конца трещины. Было обнаружено большинство из отмеченных в табл. III эффектов влияния поверхности раздела на рост трещин [22]. Эти и другие возможные виды роста усталостных трещин проиллюстрированы на рис. 10. То, какой из видов роста трещин реализуется в данном композиционном материале, зависит от относительных модулей, предела текучести и вязкости волокна и матрицы и от прочности и структуры поверхности раздела между ними. По-видимому, идеальным в смысле усталостной прочности является такой армированный волокнами металл, который имеет вязкую матрицу, обладающую невысоким пределом текучести, хрупкие волокна с высоким пределом текучести и слабое сцепление на поверхностях раздела (т. е. разрушение происходит на поверхности раздела, а не в матрице) [22].  [c.418]


Усталостное поведение композита зависит от его типа, т. е. от вида дисперсной фазы. Усталостное поведение материалов, армированных волокном, существенно отличается от поведения материалов, в которых для армирования использованы частицы. Тип материала также оказывает влияние на усталостное поведение металлы отличаются от неметаллических материалов. При изучении усталостного поведения композитов обращают внимание на отрыв по границе раздела матрица — волокно, на возникновение и развитие трещин в матрице, на разрушение дисперсной фазы и др. До того как произойдет полное разрушение материала, последовательность указанных повреждений может быть самой разнообразной. В процессе действия усталостных нагрузок могут происходить значительные изменения модулей упругости и повышение температуры. В рассматриваемом случае процесс усталости носит сложный характер. На рис. 6.31 в общем плане приведены взаимосвязи между структурой материала и процессом усталости.  [c.175]

В настоящее время проведено небольшое число исследований, в которых усталостное поведение материала рассматривается с помощью различных методик, описывающих механику разрушения. Следует иметь в виду, что для армированных пластиков из-за влияния вязкости диаграмма S—N зависит от циклической скорости. Делать какие-либо обобщающие выводы для этой зависимости, по-видимому, не рационально, поскольку существует большое разнообразие как композитов, армированных волокнами, так и материалов, упрочненных частицами. Здесь предпринята попытка использовать механику разрушения при рассмотрении задач усталости композитов, основываясь на исследованиях, проведенных в последнее время, в которых содержатся наиболее фундаментальные положения.  [c.180]

В работах [51, 58] подробно рассмотрено влияние отношения модулей упругости двух разнородных материалов на распределение упругих напряжений у конца трещины, когда она перпендикулярна плоской поверхности раздела двух материалов и конец трещины лежит на этой поверхности. Несколько позднее Леве-ренц [38] определил коэффициенты интенсивности напряжений для аналогичного случая, когда трещина располагалась вблизи поверхности раздела, но не доходила до нее. Результаты этих исследований помогают, в частности, понять механизмы усталостного разрушения армированных волокнами металлов они показывают, что поверхности раздела волокон и матрицы сильно влияют на вид распространения усталостных трещин и на механизмы усталостного разрушения композитов. Они также подсказывают, по-видимому, плодотворную область исследований по улучшению сопротивления композитов усталостному разрушению, а именно конструирование и управление структурой и прочностью границ раздела.  [c.412]

Представлена краткая история и обаор модифицированной механики раз рушения Гриффитса — Ирвина. Подчеркнуто значение коэффициента интенсивности напряжений и скорости высвобождения энергии деформирования в механике разрушения изотропных и анизотропных материалов. Кратко изложена эмпирическая трактовка процесса усталостного роста трещины в изотропной среде. Затем перечислены противоречия между основными предпосылками классической теории разрушения и особенностями протекания процесса разрушения в многофазных слоистых материалах. Тем самым показана необходимость некоторого смягчения исходных предпосылок теории разрушения, которое позволило бы создать практически применимые подходы для решения задач разрушения композитов. Очень кратко, вследствие неприменимости непосредственно к решению инженерных задач, изложены основные результаты, полученные при помощи методов микромеханики, позволяющих исследовать процессы взаимодействия между трещиной, волокном и связующим в бесконечной среде. Далее огшсаны основные концепции современных макромеханических подходов для описания процесса разрушения композитов. Отмечено, что все подходы, расчеты по которым находятся в соответствии с экспериментальными данными, исключают из рассмотрения нелинейную зону или зону разрушения у кончика трещины. Более сложные теории (с учетом критического объема, плотности энергии деформирования) наилучшим образом согласуются с экспериментами на однонаправленно армированных композитах, когда трещины распространяются параллельно волокнам. Эти теории также хорошо описывают нагружение слоистых композитов под углом к направлению армирования, когда преобладающее влияние на процесс разрушения оказывает растрескивание полимерной матрицы. Расчеты по двум приближенным теориям (гипотетической трещины и критического расстояния) и комбинированному методу (модель тонкой пластической зоны) сравниваются с данными, полученными при испытании слоистых композитов с симметричной схемой армирования [ 6°]s. Приведены данные о хорошем соответствии степенной аппроксимации, применяемой для описания скорости роста трещины, результатам испытаний на усталость слоистых композитов с концентраторами напряжений.  [c.221]


Отрицательное влияние на свойства стали оказывают сульфиды. Частицы сульфидов являются концентраторами напряжений, способствуют хрупкому разрушению при отрицательных температурах и зарождению усталостных трещин. При горячем деформировании пластичные частицы сульфидов (а также силикатов) раскатьтаются в волокна и ленточ-  [c.24]

УСТАЛОСТЬ МАТЕРИАЛОВ, изменение механич. и физ. св-в материала под длит, действием циклически изменяющихся во времени напряжений и деформаций. Изменение состояния материала при усталостном процессе отражается на его механич. св-вах, макроструктуре, микроструктуре и субструктуре. Эти изменения протекают по стадиям и зависят от исходных св-в, вида напряжённого состояния, истории нагружения и влияния среды. На определённой стадии начинаются необратимые явления снижения сопротивления материала разрушению, характеризуемые как усталостное повреждение. Сначала в структурных составляющих материала и по границам их сопряжения (зёрна поликрист. металла, волокна и матрхща композитов, мол. цепи полимеров) образуются микротрещины, к-рые на дальнейших стадиях перерастают в макротрещины либо приводят к окончат. разрушению элемента конструкции или образца для механич. испытаний.  [c.796]


Смотреть страницы где упоминается термин Волокно, влияние на усталостное разрушение : [c.111]    [c.316]    [c.97]   
Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.955 ]



ПОИСК



Волокна

Разрушение волокон

Усталостная

Усталостное разрушение



© 2025 Mash-xxl.info Реклама на сайте