Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчет продуктов сгорания

Эта же диаграмма может быть использована для расчетов продуктов сгорания топлива с воздухом.  [c.92]

В случае подсушки топлива по разомкнутому циклу к. п. д. котла и расход топлива, определенный по формуле (10-12), так же как и все расчеты продуктов сгорания, относятся к подсушенному топливу. Для пересчета на рабочее топливо расхода топлива и  [c.426]

В расчетах продуктов сгорания их энтальпию относят к единице массы или единице объема исходного топлива, а не к количеству продуктов сгорания. Для того чтобы отличить эту величину от удельной энтальпии, отнесенной к единице массы или единице объема самих  [c.87]


Расчет продуктов сгорания  [c.55]

РАСЧЕТ ПРОДУКТОВ СГОРАНИЯ  [c.55]

Расчет продуктов сгорания твердого и жидкого топлива по элементарному составу  [c.55]

Расчет продуктов сгорания газообразного топлива  [c.56]

Расчеты показывают, что только из-за неравновесного теплообмена потеря эксергии, т. е. работы, которую теоретически можно было бы получить, используя теплоту продуктов сгорания топлива, превышает 30 %.  [c.57]

В технических устройствах вода обычно выбрасывается вместе с продуктами сгорания в виде пара. Если в результате сгорания вода получается в виде пара, теплота сгорания называется низшей — Qi. Она меньше, чем Qs, на количество затрат теплоты на испарение, В СССР и ряде других стран обычно оперируют низшей теплотой сгорания на рабочее состояние Q. В США и Великобритании теплотехнические расчеты выполняют на основе высшей теплоты сгорания.  [c.123]

В соответствии с уравнением (5.3) первого закона термодинамики, количество теплоты, отдаваемой потоком газов в теплообменнике, равно разности энтальпий газов до и после теплообменника (изменением скоростного напора можно пренебречь, а техническая работа не совершается). Поэтому основой тепловых расчетов топливоиспользующих устройств является энтальпия продуктов сгорания, которую принято рассчитывать на единицу количества топлива, из которого получились эти продукты , т, е.  [c.128]

Здесь t — температура, °С, с г — средняя в диапазоне температур О — / °С теплоемкость продуктов сгорания при постоянном давлении, отнесенная к единице их объема в нормальных условиях, Дж/(м -К). Энтальпия Hr измеряется в Дж/кг или Дж/м . Удельная (отнесенная к 1 в нормальных условиях) теплоемкость дымовых газов чуть больше, чем воздуха, поскольку вместо двухатомного кислорода в них появляются более теплоемкие трехатомные Oj и НаО, однако разница не превышает 5—10%. Как и у всех газов, теплоемкость продуктов сгорания заметно возрастает с температурой. Для более точных расчетов ее можно найти по составу смеси газов  [c.128]

Поскольку объем продуктов сгорания Vr увеличивается с увеличением аа, то их энтальпия при принятом методе расчета  [c.128]

Оценочный расчет. Принимая теплоту сгорания воздуха равной 3,8 МДж/м , получим для обоих топлив теоретически необходимый расход воздуха SV ss 16,67/3,8 = = 4,39 mV . Действительный расход BV — = 01в (SK") = 5,48 mV (в нормальных условиях). Объем продуктов сгорания антрацита примерно равен объему воздуха. Количество сжигаемого доменного газа равно В = Q/Qi = = 16,67/4 = 4,17 м /с. Объем продуктов сгорания при его сжигании (SKr) (fiK ) + S = = 9,65 м /с (в нормальных условиях).  [c.214]


Таким образом, для антрацита (как и для большинства твердых топлив) оценочный расчет дает достаточно точный результат, а для доменного газа завышает расходы воздуха и продуктов сгорания примерно на 30 %. Для прикидочных расчетов это приемлемо.  [c.214]

Изложенные методы расчетов и экспериментальных оценок ракетных двигателей являются, конечно, идеализированными Если в ракетном топливе используются металлы или их соеда не-ния, то в процессе адиабатического расширения возможна конден сация некоторых продуктов сгорания. При конденсации выделяется тепло и уменьшается число молей газа. Из-за высокой скорости потока условия равновесия не выполняются. Для определения различных видов потерь в дополнение к обусловленным запаздыванием по температуре и скорости требуется знать скорость образования зародышей, конденсации (разд. 3.2) и химических реакций (разд. 3.3). Однако для веществ, образующихся при работе ракетного двигателя, и условий его работы указанные-скорости в общем случае неизвестны. В этом состоит основная трудность сравнения расчетных и действительных характеристик ракетного двигателя.  [c.335]

Из формулы (32.1) следует, что увеличение силы тяги ракетных двигателей теоретически можно получить различным путем увеличивая либо площадь 5 выходного сечения, либо скорость истечения продуктов сгорания. Увеличение площади 5 выходного сечения приводит в то же время к. возрастанию силы сопротивления воздуха при движении ракеты через атмосферу и, следовательно, к торможению ракеты. Скорость истечения продуктов сгорания также не может быть увеличена беспредельно. Как показывают расчеты, наибольшая возможная скорость истечения при использовании химических топлив составляет около 5,5 км/с.  [c.115]

При расчетах тепловых машин состав продуктов сгорания определяется коэффициентом избытка воздуха а, представляющим собой отношение действительного количества воздуха, поступившего на сгорание 1 кг топлива Lд, к теоретически необходимому для его полного сгорания  [c.92]

По сравнению с обычным газовым рулем струйный триммер находится в лучших условиях, так как омывается продуктами сгорания лишь в ограниченное время, в течение которого требуется управляющее усилие. Расчет периферийных рулей может быть осуществлен по схеме, принятой для дес))-лекторов. Такие расчеты, а также экспериментальные исследования показали, что управляющая сила в большом диапазоне углов Ор линейно зависит от площади перекрытия потока.  [c.331]

Пример. Рассчитать концентрации газообразных продуктов сгорания топливной смеси, состоящей из воздуха и бензина в соотношении 15,393 1 по массе (это соответствует коэффициенту избытка воздуха 1,05). Расчет провести для температуры 2300 К и давления 2,0 МПа.  [c.458]

Заданы газовая постоянная — 300 Дж/(кг-К) и расход продуктов сгорания Мт = 18 кг/с, а также значения параметров в начальном сечении pi, и противодавления р2- При рассмотрении продуктов сгорания как двухатомного газа расчеты показывают, что скорость его истечения и критическая скорость достигают 2000 и 1000 м/с соответственно, а диаметр критического сечения должен быть равен ПО мм. Рассчитать сопло Лаваля при тех же исходных данных, но принимая, что fe = 1,2 вследствие высокой температуры газа и его диссоциации. Угол конусности считать равным 2у = 12°.  [c.97]

При практических расчетах излучения Oj в продуктах сгорания зависимость а от р и s заменяют зависимостью от произведения ps, где для продуктов сгорания р — парциальное давление данного излучающего газа в смеси.  [c.264]

Часто теплообмен между стенкой и теплоносителем происходит не только путем конвекции, но и излучения. Так, например, в котлах, печах и сушилках, обогреваемых продуктами сгорания топлива, при температурах выше 400 °С необходимо учитывать излучение в меж-трубном пространстве трехатомных газов при расчете теплоотдачи отопительных приборов и ограждающих поверхностей зданий и аппаратов учитывается лучистый теплообмен с окружающей средой и при невысоких температурах. При подсчетах а руководствуются оптимальными скоростями теплоносителей, зависящими от гидравлических сопротивлений аппаратов.  [c.220]


При коэффициенте расхода воздуха а > 1 продукты а орания содержат дополнительный объем воздуха и влагу этого воздуха. Поэтому для твердого, жидкого н газового топлив расчет объема продуктов сгорания ведется по формулам, м /кг (м /м )  [c.242]

Обычно в таблицах наряду с теплоемкостями приводятся объемные энтальпии продуктов сгорания h = pt. Тогда расчет энтальпии продуктов полного горения при а = 1 проводится по формуле, МДж/кг (МДж/м )  [c.243]

Объемный состав продуктов сгорания перед всеми унифицированными котлами типа КУ на расходы (40 150)-10 м /ч принят следующим, % СО2 = 12 N2 = 72 О2 = 5,5 Н2О = 10,5. Объемный состав принят из расчета продуктов сгорания коксодоменного газа с теплотой сгорания = 8380 кДж/м, коэффициентам избытка воздуха перед котлом а = 1,6 и добавками газов из ванны мартеновской печи. Объемы и парциальные давления продуктов сгорания приведены в табл. П.2.1.  [c.205]

В книге изложены о новные теоретические сведения, необходимые для расчета и констругфования котельных агрегатов. Приведены основные данные по энергетическим топливам и расчетам продуктов сгорания. Рассмотрены теоретические основы процессов горения, методы сжигания топлива, конструкции топочных устройств и котлоагрегатов с естественной и принудительной циркуляцией. Описаны методики теплового, гидродинамического и аэродинамического расчетов котельных агрегатов. Рассмотрены методы получения чистого пара. Приведены основные сведения по металлам, применяемым в котлостроении, и изложена методика расчетов на прочность элементов котельных агрегатов.  [c.2]

Расчеты теплообменников удобно выполнять с помощью А/,/-диаграммы, предсгапляюнн й еобой ряд пний, дающих зависимость энтальпии продуктов сго()ания Н, от их температуры при разных значениях ав. Для примера на рис. 1G.1 построена Я,/ диаграмма для продуктов сгорания природного газа (газопровод Бухара - Урал).  [c.129]

В процессе сгорания топлива в топочной камере теплота может передаваться конвекцией и излучением нагреваемому материалу в печах или охлаждающим поверхностям в котлах. В результате газы охлаждаются, их энтальпия снижается. Этот процесс на рис. 16.1 изображается линией ав = = onst. Например, при охлаждении в топке продуктов сгорания до 1100 С и неизменном коэффициенте избытка воздуха ав=1,25 (линия АВ) их энтальпия снижается до 22,5МДж/м. В соответствии с уравнением (5.5) теплота, отдаваемая продуктами сгорания в процессе их охлаждения (в расчете на единицу количества сгоревшего топлива), равна уменьшению их энтальпии, т. е.  [c.129]

Иногда применяют выносные топки, назначением которых является только получение сорячих продуктов сгорания, используемых для технологических целей вне топки. Выносными топками, по существу, являются и к а м е р ы сгорания газотурбинных установок, реактивных двигателей и т, д. Однако чаще всего топка используется не только для сжигания топлива, но и для пере,дачи части теплоты воде и пару (в котлах) или нагреваемому материалу (в мечах). Это существенно усложняет создание общей методики расчета.  [c.131]

Для котла ТП-230 в ОТИЛ был проведен расчет компоновки всей конвективной части котла при замене газового обогрева обогревом кварцевым дисперсным теплоносителем. Согласно рис. 2-3 продукты сгорания топлива после пароперегревателя должны направляться не в опускную шахту, как обычно, а вверх — в камеру свободной газовзвеси, которая является не только противо-точной камерой нагрева дисперсной насадки, но и существенной частью дымовой трубы. При этом аэродинамическое сопротивление оо газовому тракту падает (до 130 кг м ), так как сопротивление противоточ-  [c.387]

Работу ракетного двигателя можно представить в виде последовательности квазиравновесных процессов, таких как нагревание топлива, его горение, расширение продуктов сгорания до давления истечения из сопла. Особенность их состоит в зависимости химического состава продуктов сгорания от условий проведения процесса. Термодинамика позволяет рассчитать равновесный молекулярный состав газов на каждом из этапов работы двигателя, если известны необходимые свойства исходных веществ и продуктов сгорания. В итоге удается отделить термодинамические задачи от газодинамических и оценить удельную тягу двигателя при заданном топливе или, не прибегая к прямому эксперименту, подобрать горючее и окислитель, обеспечивающие необходимые характеристики двигателя. Другой пример — расчет электропроводности низкотемпературной газовой плазмы, являющейся рабочим телом в устройствах для магнитно-гидродинамического преобразования теплоты в работу. Электропроводность относится к числу важнейших характеристик плазмы она пропорциональна концентрации заряженных частиц, в основном электронов, и их подвижности. Концентрация частиц может сложным образом зависеть от ис- ходного элементного состава газа, температуры, давления и свойств компонентов, но для равновесной плазмы она строго рассчитывается методами термодинамики. Что касается подвижности частиц, то для ее нахождения надо использовать другие, нетермодипамические методы. Сочетание обоих подходов позволяет теоретически определить, какие легкоионизирующиеся вещества и в каких количествах следует добавить в плазму, чтобы обеспечить ее требуемую электропроводность.  [c.167]

Расчет процессов горения весьма усложнился, когда в практике стали использоваться значительно более высокие температуры горения (3000—4000° К), которые, например, встречаются в ракетных двигателях. Возникла необходимость более тщательных и точных расчетов преобразования химической энергии топлива (горючее + + окислитель) в теплоту продуктов сгорания, вследствие чего энергетикам потребовалось основательное изучение новой области термодинамики, а именно хилгаческой термодинамики, в которой основные законы термодинамики применяются к процессам, происходящим при превращении химической энергии исходных веществ (топлива) в теплоту (продуктов горения).  [c.8]


Пример 4.1.1. Рассмотрим расчет осноогтых проектных параметров соплового тракта управляющего двигателя для следующих исходных данных управляющее усилие (тяга) Р = 180 кгс (1,77-10 Н) время работы двигателя = 4 с газовая постоянна продуктов сгорания топлива Р = 294 Дж/(кг-град) отношение теплоемкостей к = = 1,25 температура в камере сгорания Та — 2285 К и давление ро = = 40 кгс/см (3,92 10 Па) удельный вес материала сопла Ус = 7,85 кгс/см .  [c.307]

Представленные на рис. 17.1 кривые получены в р ультате проведения серии расчетов термодинамического равновесия. Они показывают зависимость объемной доли NO и СО в продуктах сгорания от максимальной температуры рабочего процесса и коэ4 -фициента избытка воздуха (а).  [c.168]

В термодинамическом цикле ГТУ с подводом теплоты при р = onst (рис. 11.7) известны следующие параметры = 17 °С pjpi — 3,5 1з = 650 °С. Определить удельные индикаторный и эффективный расходы топлива в установке, если теплотворная способность топлива Qp = = 41 ООО кДж/кг, расход воздуха = 5000 кг/ч, относительный индикаторный (внутренний) к. п. д. установки Tioi 0,73, механический к. п. д. т] = 0,88. При расчете пренебречь разницей в физических свойствах воздуха и продуктов сгорания топлива, а также количеством теплоты,  [c.130]

При расчете теплообмена в топке важной характеристикой является теоретическая температура горения, под которой понимают адиабатическую температуру горения при существующем коэффициенте избытка воздуха в топке. Теоретическая температура горения — это та, которую можно получить при отсутствии теплообмена в топке, она является максимально возможной при сжигании данного топлива. Вследствие интенсивного лучистого теплообмена в топочной камере температура продуктов сгорания, естественно, всегда ниже. Наряду с теоретической температурой горения важным параметром, характеризующим работу топки, является температура газов, покидающих топку. Эта температура должна быть ниже размягчения золы данного топлива. Для большинства отечественных твердых топлив она составляет 1100°С. Снижение температуры в топке до этого значения достигается чаще всего установкой дополнительных трубчатых теплообменных поверхностей, которые называюгся экранами.  [c.245]


Смотреть страницы где упоминается термин Расчет продуктов сгорания : [c.250]    [c.137]    [c.211]    [c.306]    [c.312]    [c.328]    [c.168]    [c.284]   
Смотреть главы в:

Справочник энергетика промышленных предприятий Том 3  -> Расчет продуктов сгорания


Справочник энергетика промышленных предприятий Том 3 (1965) -- [ c.57 , c.59 ]



ПОИСК



Особенности расчета кривой давления в камере сгорания и проектирования двигателя при наличии конденсированной фазы в продуктах сгорания

Продукты сгорания

Продукты сгорания расчет по газовому элементарному составу

Продукты сгорания расчет энтальпия

Продукты сгорания, расчет по газовому анализ

РАСЧЕТ ОБЪЕМОВ И ЭНТАЛЬПИЙ ВОЗДУХА И ПРОДУКТОВ СГОРАНИЯ

Расчет излучения продуктов сгорания

Расчет объемов воздуха и продуктов сгорания

Расчет объемов и теплосодержания воздуха и продуктов сгорания

Расчет состава диссоциированных продуктов сгорания

Расчет состава продуктов сгорания топлив

Расчет состава продуктов сгорания топлива, не содер1 жащего азота

Расчет энтальпий воздуха и продуктов сгорания

Расчёт количества продуктов сгорания

Теплосодержание продуктов сгорания и воздуОсобенности расчета для газообразного топлиГлава четвертая. Общие характеристики работы топочных устройств Стадии процесса горения



© 2025 Mash-xxl.info Реклама на сайте