Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Собственные функции свойства по отношению к операциям симметрии

Точечные группы. и Z).,,, — Если молекула обладает осью симметрии порядка р Ср или S , где р четное, то колебание или собственная функция может быть также антисимметричной по отношению к этой оси (см. стр. 96). Поэтому получается в два раза больше невырожденных типов симметрии, чем при нечетных р. Для точечной группы Ср , р плоскостей нужно разделить на два класса, р/2 плоскостей, обозначаемых символом о , и остальные р/2 плоскостей, обозначаемых символом (последние плоскости по отношению к первым являются диагональными плоскостями), гак как эти две совокупности плоскостей отличаются различными свойствами преобразования (имеют различные характеры). Сразу же видно (ср., например, фиг. , ж и 1,к), что отражение молекулы в плоскости можно заменить отражением в плоскости с последующим поворотом на угол 2тг/р вокруг оси Ср. Только ось симметрии Ср и р 2 плоскостей являются независимыми элементами симметрии, и четыре невырожденных типа симметрии соответствуют четырем комбинациям - -f-, -j---, ----------, отличаясь различным поведением по отношению к двум операциям Ср и Поведение по отношению к отражению в плоскости о , которое не всегда совпадает с поведением по отношению к отражению в плоскости о , получается, перемножением характеров для операций Ср и о .  [c.127]


Свойства симметрии оператора Гамильтона уже сами дают нам сведения о структуре возможных решений (собственных функций и собственных значений в уравнении (16.1)). В следующих параграфах мы рассмотрим следствия, вытекающие из трансляционной инвариантности, которые дадут нам основы зонной модели, и следствия из инвариантности по отношению к другим операциям симметрии пространственной группы ( 18, 25).  [c.77]

Обобщение предыдущих результатов. Мы вывели свойства симметрии колебательных собственных функций из свойств симметрии нормальных координат. В действительности, свойства симметрии собственных функций имеют значительно более общий характер и не зависят от предположения о гармоничности колебаний. Потенциальная энергия, даже если она и не является простой квадратичной функцией от составляющих смещений, как в (2,25), должна быть инвариантна по отношению ко всем операциям симметрии, образующим точечную группу, к которой принадлежит молекула. Поэтому уравнение Шредингера (2,40) инвариантно по отношению к этим операциям симметрии и, следовательно, собственная функция относительно этих операций симметрии может либо быть только симметричной, либо антисимметричной, если состояние является невырожденным либо может преобразоваться также и в линейную комбинацию взаимно вырожденных собственных функций, если состояние вырожденно (см. Молекулярные спектры 1, гл. V, 1). Можно показать, что последнему случаю соответствует ортогональное преобразование, при двукратном вырождении имеющее вид (2,75) или (2,76).  [c.118]

До сих пор мы рассматривали поведение нормальных колебаний и колебательных собственных функций только по отношению к отдельным операциям симметрии. Однако, в силу того что различные точечные группы характеризуются только известными комбинациями элементов симметрии (см. стр. 15) и что одни из этих элементов симметрии являются необходимым следствием других, возможны только определенные комбинации свойств симметрии нормальных колебаний и колебательных (и электронных) собственных функций, что было впервые показано Брестером [178]. Мы будем называть такие комбинации свойств симметрии типами симметрии (см. Мелликен [643]). В теории групп они соответствуют так называемым неприводимым представлениям, некоторые авторы предпочитают применять этот последний термин. Типы симметрии для всех молекул, за исключением молекул, принадлежащих к кубической точечной группе (см. также Плачек [700]) можно весьма легко определить на основании предыдущего, не прибегая явно к помощи теории  [c.118]


Классификация электронных состояний, В уравнении Шредингера для движения электронов (1,5) величина Уе обозначает потенциальную энергию электронов в поле ядер (неподвижных). Как указано выше, в первом приближении (которое, как правило, является хорошим) мы можем рассматривать движение электронов при равновесном положении ядер. Поэтому функция Уе У 1меет ту же симметрию, что и молекул(а в определенном электронном состоя- ти. Таким образом, уравнение Шредингера, описывающее электронное ч движение, не изменяется под действием операции симметрии. Следовательно, 4 лектронная волновая функция невырожденного состояния может быть 4 олько симметричной или антисимметричной по отношению к каждой из оне-. Ч аций симметрии, допускаемых симметрией молекулы в равновесном ноло- ении, т. е. она либо остается неизменной, либо только меняет знак. В случае вырожденных состояний собственная функция может превращаться только в линейную комбинацию двух (или более) вырожденных волновых функций, так что квадрат волновой функции, представляющий собой электронную плотность, остается неизменным. Различные волновые функции могут вести себя по-разному по отношению к различным операциям симметрии данной точечной группы но, как правило, не все элементы симметрии точечной группы независимы друг от друга, поэтому возможны лишь определенные комбинации поведения волновых функций по отношению к операциям симметрии. Такие комбинации свойств симметрии называются типами симметрии (см. [23], стр. 118). На языке теории групп это неприводимые представления ])ассматриваемой точечной группы. Каждая электронная волновая функция, а следовательно, и каждое электронное состояние принадлежат к одному из возможных типов симметрии (представлений) точечной группы молекулы  [c.17]


Смотреть страницы где упоминается термин Собственные функции свойства по отношению к операциям симметрии : [c.600]    [c.616]    [c.619]    [c.623]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.118 ]



ПОИСК



SU (3)-Симметрия

Операции над отношениями в РБД

Операции симметрии

Отношение

Полная собственная функция свойства по отношению к операциям симметрии

Свойства функции в(х) елп

Симметрия, свойства

Собственные функции

Собственные функции собственные функции)



© 2025 Mash-xxl.info Реклама на сайте