Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальное уравнение волновое импульса

Решение системы а дифференциальных уравнений в частных производных типа (П6-4), связанных между собой нелинейными членами, требует очень сложных расчетов. Их следует проводить в разумных приближениях. Поэтому для каждой конкретной проблемы, как правило, следует оценить те члены, которыми можно пренебречь. Помимо названных материальных констант, должны учитываться реальные условия, в которых протекают исследуемые процессы длительность взаимодействующих групп волн (длительность импульса), длина кюветы, время установления колебаний, коэффициенты усиления, время разбегания групп волн, взаимодействие различных эффектов НЛО. Для обработки математической части этой задачи преимуществом обладает фурье-представление уравнения (П6-4). В этой связи сошлемся на выкладки, приведенные в конце разд. 1.321. В фурье-представлении отдельные члены принимают вид членов разложения в ряд по степеням fk или q(fh), что значительно облегчает количественные оценки. Так, например, отношение третьего слагаемого ко второму слагаемому в левой части обычно имеет порядок отношения q(fh)lq fh), а отношение пятого слагаемого к четвертому — порядок fft/fft. При соответствующих экспериментальных условиях может оказаться полезным перейти от координат t я z к другим координатам, чтобы можно было описать нестационарное поведение при помощи наиболее простого дифференциального уравнения (пренебречь производными высших порядков). Такое упрощение может быть достигнуто (см., например, [21]), если считать волновую амплитуду Е зависящей от координат Z и w t — Z. Вторая координата позволяет непосредственно задать изменение Е в системе, движущейся вместе с группой волн (групповая скорость w ). Упрощение дифференциального уравнения может быть достигнуто, если при соответствующих экспериментальных условиях исходить из допущения, что Е лишь относительно медленно меняется с изменением г при постоянном значении w t — Z.  [c.233]


Теперь мы можем использовать результаты предыдущей главы для исследования процесса распространения волновых импульсов конечной ширины в среде, для которой справедливо обобщенное волновое уравнение (3.33) и его многомерные варианты. Благодаря тому, что эти уравнения являются линейными и причинными, знание их функций Грина дает возможность рассмотреть и построить решения задач о возбуждении и распространении волновых импульсов от источника, который начал действовать в первоначально невозмущенной среде в определенный момент времени (который всегда можно принять за нулевой) по некоторому, зависящему от времени закону. В обычных граничных задачах для линейных дифференциальных уравнений в частных производных эта проблема легко решается с помощью принципа Дюамеля, позволяющего выразить решение через свертку заданной функции источника с функцией Грина. Из-за наследственного последействия точечного источника в изучаемых моделях сред этот метод требует модификации [39].  [c.176]

Выведенные в настоящем параграфе выражения для нелинейной поляризации (17) и (7) совместно с выражением для индукции электрического поля (1.1.9) позволяют перейти от точного интегродифференци-ального описания (1) явления самовоздействия к описанию с помощью только дифференциальных уравнений, учитывающих в различных порядках дисперсию линейной и нелинейной восприимчивостей и эффекты волновой нестационарности. Конкретный вид приближенных уравнений теории самовоздействия коротких импульсов приведен в следующих параграфах.  [c.76]

Важным требованием црп численном моделпровапнп негладких или ударно-волновых динамических процессов является выполнение дискретных аналогов интегральных законов сохранения массы, импульса, энергии и термодинамического неравенства (второго закона термодинамики) [20, 161, 192], в частности построение разностных схем, аппроксимирующих дивергентные формы дифференциальных уравнений в частных производных [74, 75]. Эти требования входят в понятие консервативности разностных схем и полной консервативности [46, 47, 101, 162], при которой для копечио-разпостпой или дискретной системы также выполняются определенные эквивалентные преобразования, аналогичные дифференциальным преобразованиям системы уравнений в частных производных.  [c.27]



Смотреть страницы где упоминается термин Дифференциальное уравнение волновое импульса : [c.185]   
Тепломассообмен (1972) -- [ c.12 , c.33 , c.269 ]



ПОИСК



Волновой импульс

Уравнение волновое дифференциальное

Уравнение волновое уравнение

Уравнение импульсов

Уравнения волновые



© 2025 Mash-xxl.info Реклама на сайте